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1 Abstract

This documents describes two a priori methods for evaluating the uncertainty of measurement
in coordinate metrology. A priori means that the needed information is known prior to the actual
measurement. This enables predicting the uncertainty and then comparing among possible
different experimental plans to pursue one or more measurands. These methods are referred
to as Methods B to reflect the type B evaluation of the uncertainty according to the GUM.

The main source of prior information is the set of metrological characteristics standardized in
the EN ISO 10360 series of standards, which is well accepted and widely used in industry.
Either the actual measured values or the specification on data sheets (the MPEs, Maximum
Permissible Errors) of such metrological characteristics can be fed to the methods B.

To propagate the input uncertainties to the combined uncertainties, suitable sensitivity
coefficients are needed, usually arranged in matrices. These matrices reflect the nominal
geometry at hand, the sampling strategy and the sequence and choice of mathematical
operators employed to derive the results. They are independent of actual measurements taken
and hence predicable.

Two Methods B are described in this document, referred to as B1 and B2. The latter was not
anticipated in the project protocol and is and extra result of the project. The two methods are
similar in the evaluation of the input uncertainties but completely different and independent to
each other in the sensitivity analysis, that is, in the way the input uncertainty are propagated
to the combined uncertainties.

2 Introduction

2.1 Project background

EUCoM — Evaluating Uncertainties in Coordinate Measurement — is an EMPIR/Euramet-
supported project to develop new methods for estimating the uncertainties of tactile
measurements. There are two basic approaches, named methods A and B*:

e A posteriori (Method A): Estimate uncertainties using experimental data from repeated
measurements in four different orientations. A length and a sphere standard must also
be measured.

e A priori (Method B): Estimate uncertainties using expert knowledge and performance
characteristics of or prior experience with the CMM (coordinate measuring machine)
being used.

In essence, method A is an empirical approach to measurement uncertainty. While it requires
more measurement work to be done, it does not depend on any modelling of the particular
measurement system used to obtain it. Method B is the exact opposite, requiring no prior data
other than information that would usually be available from prior use of the system.

2.2 Objective of a priori methods

The main objective of a priori methods is to predict the uncertainty before any measurements
are taken. This is useful for checking whether a perspective measurement strategy is adequate
for a predefined target uncertainty and to compare among alternative CMMs and strategies. In
this way, a priori methods are important design of experiment tools and important for
constructing a measurement methodology that will be fit for purpose.

Another objective of a priori methods is to estimate the uncertainties associated with actual
measurements based on information that is available prior to the measurements without the
need for i) additional statistical analysis of the actual measurement results, which may require

1 The methods are named “A” and “B” with reference to the types of evaluation of the uncertainty
described in the GUM [3] 4.2 and 4.3.
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resources that are not available, nor ii) additional experiments that are required by a posteriori
methods.

The a priori nature of methods B imposes that the evaluation cannot count on experimental
information derived from the specific measurement being evaluated, it can only on general
information about the CMM and the environment. As a consequence, the information fed to
methods B is likely weaker than to methods A: the uncertainty evaluated with methods B will
likely be coarser. When both methods are applicable, methods B are recommended only when
the target uncertainty is not tight, in view of the saving of the experimental effort.

3 A priori information available to type B methods

The ambition of methods B is to rely on information that is already available to the user with
no or little extra experimental effort.

Two main sources of information are needed to evaluate the uncertainty according to the GUM:
the input standard uncertainties and the sensitivity coefficients. The following sections address
either one.

3.1 Input uncertainties

The main source of such information is the metrological characteristics of CMMs as defined in
the EN ISO 10360 series of standards. This series provides a set of predefined indicators—the
metrological characteristic—-to measure the CMM performance. CMMs are versatile and
re-programmable instruments able to perform a virtually infinite number of measurement tasks.
Verify them all experimentally would not be viable for any standardized procedure. The
approach of the EN ISO 10360 is to select a limited number of measuring tasks identified by
the standard maker? as a reasonable compromise between thoroughness and coverage of the
tests. These tasks are summarised by a set of metrological characteristics deemed as
paradigmatic of the actual CMM performance. The most relevant for the methods B in this
document—which is limited to tactile Cartesian CMMs—are defined in EN ISO 10360-2 [1] and
EN ISO 10360-5 [2], namely:

e E,, length measurement error (EN ISO 10360-2). This is the error of indication of a

CMM when measuring a calibrated test length bi-directionally. A calibrated test length
is implemented by means of either a material or an immaterial standard of size.
Examples of material standards of size are gauge blocks and step gauges; examples
of immaterial ones are a CMM rectilinear movement directly measured by
interferometry. Bi-directionally means that the probing occurring at the opposite ends
of the standard are along opposite directions. For instance, this is the natural case for
gauge blocks, it is between an even and an odd face of a step gauges, and it is on the
opposite faces of an auxiliary short gauge blocks sliding along a straight line whose
displacement is measured interferometrically?.
This metrological characteristic captures the CMM capability of measuring distances
accurately regardless of their orientations in the measurement volume. It is a powerful
indicator of how well-behaved the measurement volume is. The volume can be
envisaged as a 3D grid of equally-spaced coordinate lines; only when the grid is
perfectly straight, square and traceably sized, the distance between any points pair is
without error. The errors are a good measure of how the actual volume deviates from
the nominal, that is, how curved, oblique and expanded/compressed it is.

e Psiz, size error (EN ISO 10360-5). This is the error of indication of the diameter of a
calibrated test sphere measured with one or more styli, each probing a predefined
number of points (25) evenly spaced on a hemisphere.

2 The competent standardization body is the 1SO/TC 213 Dimensional and Geometrical Product
Specification and Verification. The preparation work on this subject matter is assigned to the
ISO/TC 213/WG 10 CMMs.

3 More examples and details are found in the Annex B of [2].
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This metrological characteristic captures the CMM capability of a probing system of
localising the probed points on the workpiece surface relative to a representative point
of the ram whose coordinates are measured as the three scale readings. A positive
error indicates that the surface is sensed as shifted out of the material and vice versa.

e  Prom, form error (EN 1SO 10360-5). This is the form error (span of the radial distances

of the measured points) of a calibrated test sphere measured with one or more styli,
each probing a predefined number of points (25) evenly spaced on a hemisphere. As
the actual form error of the test sphere is required to be small relative with the CMM
performance, the measured form error is attributed to the CMM.
This metrological characteristic captures the CMM capability of a probing system of
sensing the workpiece surface independently of its orientation, or equivalently,
independently of the probing direction. Any anisotropy of the probing system results in
a measured form error of the nearly perfectly-shaped test sphere.

e Lpiasxes, multi-stylus location error (EN 1SO 10360-5). This is the 3D span* of 5 test
sphere centres measured with as many different styli (e.g., those of a star stylus
system). When multiple styli are involved in a same measurement, the relative offsets
of their tip centres are very relevant for the final accuracy and are taken care of
automatically by the CMM. The offsets are derived experimentally beforehand in the
gualification procedure of the probing system. Any error in determining such offsets
results in measuring a same physical sphere at different locations.

This metrological characteristic captures the CMM capability of relating the
measurements taken with different probe styli to each other.

The above metrological characteristics are subject to MPEs (Maximum Permissible Errors).
They are set by the CMM manufacturer for acceptance testing and by the CMM user for
reverification testing. In all cases, testing according to the EN ISO 10360 series requires that
each metrological characteristic is assigned an MPE.

When applying methods B, the actual values of the metrological characteristics may or may
not be available. A necessary condition for the former case is that the CMM is identified:
different CMMs—even of the same model-may perform differently within the common MPEs.
When a specific CMM is not defined instead (even if its model is), such values are not available.
This situation may occur when several CMMs of the same model are available—for instance in
a large laboratory or workshop—or when one or more models are being compared to each other
based on a specific measurement task.

In all cases, MPEs are assumed to be available. They may be derived from the CMM data
sheets, or from the purchase contract, or from company regulations aiming at guaranteeing
that the CMM is fit for purpose.

When both the measured value and the MPE are available of a metrological characteristic, it
is recommended that the former is fed to the methods B for the uncertainty evaluation. In fact,
the measured values are more tailored to a specific CMM than the MPEs are, which applies to
all CMMs of that model instead.

3.2 Sensitivity coefficients

The sensitivity coefficients express how the measurand varies when the input quantities vary:
the more it does the larger the coefficients. Their fundamental role is in the propagation of the
input uncertainties to the combined uncertainty.

When the measurand is scalar, i.e. when a single quantity is under measurement, the
sensitivity coefficients are the partial derivatives of the measured quantity to the input
quantities, see [3] 5.1.3. They collectively form a vector with as many components as input
guantities. A convenient equation for the propagation is

4 More precisely, this is the diameter of the minimum circumscribed sphere encompassing all measured
centres.
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where c is the vector of the n sensitivity coefficients and V, the (n x n) variance matrix of the
n input quantities, x. This equation accounts for the possible correlation of the input quantities,
manifested by non-null covariances appearing off-diagonal in V.

Typical measuring tasks in coordinate metrology involve multiple measurands at the same
time. For instance, the measurement of a cylinder involves a localisation point on and an
orientation unit vector of its axis, and an intrinsic dimensional quantity such as the diameter>®.
The measurands are not a single scalar in this case, rather a vector of m quantities, y, and the
complete description of their uncertainties is an (m x m) variance matrix, V,,. The sensitivity
coefficients follow this increase in the dimension of the problem: the vector of coefficients
becomes a (m x n) sensitivity matrix, G, and the uncertainty propagation is
Vy = Gy|xVxG;|x' (Gylx)ij = Z_i/]l

Usually, multiple geometric elements are involved at the same time with measurands derived
from their combination. Some geometric features may be involved for the measurand even
though they are not in the measurand. The typical case is that of datum features: they constrain
relevant locations and orientations of the measurands but are not part of them. For instance,
the orthogonality of the median line of a cylinder to a datum plane involves the distances of the
centres of the nominally-circular sections of the cylinder, to a line orthogonal to the plane. The
plane orientation plays an essential role in the measurement but is not a measurand. Obviously
the plane orientation is relevant for the uncertainty but is not explicit in any variance matrix; it

is rather “hidden” in the sensitivity matrix G-

The sensitivity analysis is particularly suited for dealing with such cases. The chain rule of
derivation enables expressing the overall sensitivity matrix as the product of sensitivity
matrices relevant for intermediate calculations. In the above example, if a is the unit vector
normal to the plane, the overall sensitivity matrix can be derived as Gy = GyqGqjx, Where G,
is the sensitivity of the plane orientation to the probed points (no involvement of the cylinder)
and G, that of the measurands to an orientation (no involvement of the plane): full decoupling
of the two involved elements is achieved.

The sensitivity matrix depends only on the problem geometry, the sampling strategy and the
choice and sequence of mathematical operator to derive the results. In principle, the actual
geometry and sampling should be considered, with all their imperfections. However, the
sensitivity is dominated by macroscopic quantities (such as distances between elements and
extents of elements), whereas their microscopic imperfections are second-order. In conclusion,
the sensitivity analysis requires detailed prior knowledge of the nominal geometry and
sampling strategy and of the sequence of computation.

This knowledge is in fact embodied in the part programme of the measurement task. When
one is available (for instance developed in a previous similar measurement), the needed
information is all available and can be derived automatically (at least in principle, when suitable
software tools are able to). In the most general scenario, no part programme is available. The
nominal geometry is known, as defined by, e.g., drawings or CAD models. The sampling
strategy and the computation is not. Deciding on them is a very important task of the
metrologist's. The a priori Methods B helps in doing: alternatives are considered, their
sensitivities are analysed, and one is selected as the best trade-off between small uncertainty
and low measurement cost.

5> These measurands are the parameters of the parameterisation of the element. A set of standardised
parametrisations is found in [4] Table 3.

-6 -



EUCoM D2 Report: A Priori (type B) evaluation 11/2021

4 Structure of this document

The EUCoM project aimed at developing one Method B. Its conceptual flow is anticipated in
the project protocol.

In the course of the project, another method B was found. Both are a priori, that is, based on
essentially the same or similar prior information on the CMM. Apart from that, the two methods
are independent to each other and alternative, and exhibit different characteristics as to the
treatment of data, the equations involved and the needed software.

For brevity, the two methods are referred to hereafter as Method B1 and B2, respectively: that
originally foreseen in the project protocol is B1.

The following two Sections describes methods B1 and B2, respectively.

Some common conclusions follow at the end.

5 References

[1] EN ISO 10360-2:2009 Geometrical product specifications (GPS) - Acceptance and
reverification tests for coordinate measuring machines (CMM) - Part 2: CMMs used for
measuring linear dimensions, 2009.

[2] EN ISO 10360-5:2020 Geometrical product specifications (GPS) - Acceptance and
reverification tests for coordinate measuring systems (CMS) — Part 5: Coordinate
measuring machines (CMMs) using single and multiple stylus contacting probing systems
using disc, 2020.

[3] JCGM 100: 2008 - Evaluation of measurement data — Guide to the expression of
uncertainty in measurement, 2008.

[4] 1ISO 10360-6:2001 Geometrical Product Specifications (GPS) — Acceptance and
reverification tests for coordinate measuring machines (CMM) — Part 6: Estimation of
errors in computing Gaussian associated features, 2001.
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approximate models of CMM
behaviour
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I.1 Outline of this section (Method B1)

The section is organised as follows.

Section 1.2 discusses the main elements of the approach based on the method-
ology underpinning the Guide to the Expression of Uncertainty [5], covering;:

e what is meant by an a prior: method,

e a summary of the GUM approach in terms of a functional relationship
relating measurands and their influence factors, the statistical charac-
terisation of the influence factors in terms of mean and variances, and
how their statistical can be used to provide a statistical characterisa-
tion of the measurands,

e the application of the GUM methodology to CMM measurement to
provide a statistical characterisation of point clouds and features de-
rived from point clouds in terms of a statistical characterisation of the
influence factors

e the influence factors important for CMM measurement discussed in
this section

e how the CMM influence factors are characterised statistically in terms
of statistical parameters, and

e how these statistic parameters can be assigned from prior knowledge.

Section I.3 describes the models for the influence and how uncertainties
associated with the influence factors are propagated through to point clouds.

Section 1.4 describes how the uncertainties associated with the influence fac-
tors propagate through to uncertainties associated with length measurement
an how a statement of length measuring capability such as maximum permis-
sible error can be used to guide the assignment of the statistical parameters
for the influence factors.

Section 1.5 describes how uncertainties associated with point clouds are
propagated through to features extracted from the point clouds in terms
of sensitivity matrices. The section describes how sensitivity matrices for
least-squares element and surface fitting can be evaluated and how they
can be approximated for standard measurement strategies. The section also
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provides an analysis of how uncertainties associated with partial features
behave and discusses uncertainty propagation associated with establishing
a datum frame of reference.

Section 1.6 gives a brief description of how workpiece form error influences
featured derived from point clouds. Section 1.7 discusses how a Monte Carlo
method can be used to evaluate uncertainties associated with derived fea-
tures, particularly those associated with Chebyshev/minimum zone fitting
criteria.

I.1.1 Notation
General notation

Given coordinate data x;, ¢ = 1,2,...m, then

1 Tp
Y1 Yp
Z1 Zp
L1:m = x2 y  Lpg = ) q > b,
. X
q
Ym Yq
L Zm L Zq

i.e., 1., represents the 3m x 1 vector of coordinates in the given order, etc.

Notation associated with statistical characterisation of CMM in-
fluence factors

Table I.1 gives a summary of the notation used in this document relating to
CMM influence factors and associated statistical parameters.

Notation relating to variance matrices associated with coordinate
data

Table 1.2 gives a summary of the notation used in this document relating to
variance matrices.

I-3
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Symbol ‘ Association, interpretation

MPE | Statement of maximum permissible error
A, B | Parameters characterising the MPE as a function of distance,
A+d/B
R Repeatability
OR Standard deviation associated with repeatability
PQ Probe qualification/location effects
oPQ Standard deviation associated with probe qualification effects
S Scale and squareness effects
s Standard deviation associated with a global scale effect
0S.a Standard deviation associated with independent scale effects
associated with each axis
0Q Standard deviation associated with independent squareness
effects
ET Geometric location errors (local scale and straightness)
OET Standard deviation associated with spatially-correlated geo-
metric location errors
AET Length scale parameter associated with the spatially-
correlated geometric location errors
ER Geometric rotation errors (roll, pitch and yaw)
OER Standard deviation associated with spatially-correlated geo-
metric rotation errors
AER Length scale parameter associated with the spatially-
correlated geometric rotation errors
P Probing effects
op, Standard uncertainty in the probe radius
op Standard deviation associated with spatially-correlated prob-
ing effects
Ap Length scale parameter associated with the spatially-

correlated probing effects

Table I.1: Notation associated with CMM influence factors.
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Symbol ‘ Association, interpretation

Va variance matrix associated with quantities labelled ‘A’ due
to all influence factors

Vais variance matrix associated with quantities labelled ‘A’ due
to influence factors labelled ‘B’

Kpg variance factor of Vg with Vg = K BK;

D¢ diagonal variance factor of Vg with Vo = DcDg = D%
G4p | sensitivity matrix of quantities labelled ‘A’ with respect to
influence factors labelled ‘B’

Table 1.2: Notation associated with the variance matrices.
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I.2 An a priori method based on the GUM method-
ology

I[.2.1 Summary of the GUM methodology

The a priori uncertainty evaluation approach described in this report is
based on the methodology described in the Guide to the Expression of Un-
certainty in Measurement, the GUM, [2], specifically GUM Supplement 2 [4]
which deals with multivariate outputs. A feature that distinguishes coordi-
nate metrology from other areas of metrology is the fact that the measurands
are usually multivariate, for example, a set of point coordinates, or are de-
rived from multivariate quantities, e.g., the radius of a cylinder associated
with a set of coordinates. The GUM methodology involves an input-output
model in which the measurand(s) « are described as having a functional re-
lationship & = f(b) on a set of inputs or influence factors b. Any statistical
characterisation of the influence factors b defines a corresponding statisti-
cal characterisation of the outputs @. In particular, if b is associated with
a (multivariate) probability distribution with mean b and variance matrix
VB, the mean & and variance matrix Vx associated with x are completely
defined by the functional relationship @ = f(b). If f is a nonlinear function
of b, the mean and variance associated with & may be difficult to compute
exactly but can be approximated by linearising f about b. If G X|B is! the
sensitivity matriz of & with respect to b,

.. Of;
GX|B(17.]) = ag
J

then the law of propagation of uncertainty (LPU, [10]) states that & and Vx
are approximated by

&~ f(b), Vx=~ Gx8VBG X p; (I.1)

a multivariate version of the well-known formula used in the GUM. The
standard uncertainties u(x) associated & are given by the square roots of
the diagonal elements of V.

If the inputs b are associated with a multivariate Gaussian distribution?
b~ N(b,Vp),

!The symbol X|B can be read as ‘X given B’.
2The symbol ~ can be read as ‘is distributed according to’.

I-6
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then the distribution associated with @ is approximated by N (&, Vx). The
LPU is exact for linear functions f and in this case if b is associated with
a Gaussian distribution, x is also associated with the given Gaussian dis-
tribution and no approximation is involved. For measurements that are
associated with a number of influence factors, the distribution NV (&, Vx) is
usually a suitable approximation to the true distribution.

In coordinate metrology, relative accuracies are of the order of 1 part in
10° so that second order effects are of the order of 1 part in 10'° and can
be ignored in almost all applications. This means that the linearisation
of f in (I.1) used to propagate the uncertainty information introduces no
significant approximation error. One significant exception is in extracting
features from point cloud data based on Chebyshev/minimum zone criteria
and related criteria. In this case the functional f relationship is nonlinear
and, more challenging, the first order partial derivatives a not continuous so
that evaluating the partial derivatives of f at one estimate need not be a
good guide to the partial derivatives at a nearby estimate.

Monte Carlo methods, as described in GUM Supplement 1 [3], can be used
for problems for which a linearisation of the functional relationship is not
effective. The concept is simple. If by, ¢ = 1,..., M, are samples from
the multivariate probability distribution characterising the influence factors
then,

mq:f(bq)v qzla"'aMa (12)

are samples from the probability distribution associated with the measur-
ands . The mean and variance matrix associated with x are estimated
from the mean and variance matrix associated with the sample x1.),.

I.2.2 A GUM methodology applied to CMM measurement

To apply the GUM methodology, requires

e specifying the set of factors b that influence the measurand(s) x,

e establishing the functional relationship of & = f(b) how a depends on
the influence factors b,

e assigning estimates b of the influence factors b and the associated
variance matrix Vg, and

-7
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e cvaluating the sensitivity matrix G.

Once these steps have been been completed, the LPU can be used to statis-
tically characterise @ in terms of & and Vx as in (I.1).

1.2.3 CMM influence factors

This report considers the following CMM measurement influence factors:

e Repeatability effects (R)

Probe qualification/location effects (PQ)

Scale and squareness effects (S)

Kinematic/geometrical errors: straightness errors (ET)

Kinematic/geometrical errors: angular/rotation errors (ER)

Probing effects: probe radius, errors depending on probing direction

(P)

The labels in brackets are used comnsistently in this report to denote the
corresponding influence factor. Temperature effects are assumed to arise via
changes in scale and machine geometry. Hysteresis effects are not covered
in this report. The effects of workpiece form error is considered to some
extent.

I.2.4 Functional relationship between influence factors and
point coordinates and derived features, evaluated sen-
sitivities

The evaluation uncertainties associated with geometric features a derived
from coordinate data 1., can generally be though of as two stage process,
the first in which a 3m x 3m variance matrix Vx associated with the coor-
dinate data 1., is evaluated, the second stage in which the uncertainties
associated with @q.,, are propagated through to those for the features a
derived from x1.,,. Hence there are two functional relationships to derive,
the first from influence factors b to point cloud @1.,,, the second from point

I-8
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cloud data to derived features. These functional relationships are generally
straightforward to derive and are described in this report for the influence
factors listed above and for features based on fitting an geometric element
or design surface to a point cloud based on a least-squares criterion. Much
of the technical elements of this report is given to deriving these functional
relationships and corresponding sensitivities. All of the calculations are
straightforward and can be implemented in a spreadsheet that supports ba-
sic matrix operations. No optimisation or Monte Carlo sampling is involved.

1.2.5 Statistical characterisation of the influence factors

The a priori nature of the methods described in this report arises in the
the assignment of the statistical characterisation of the influence factors.
All other aspects are more or less defined and follow standard mathemati-
cal/engineering practice. In order for the a priori method to be practical, it
is necessary that the statistical characterisation requires the assignment of
a modest number of parameter values, o say, and that these values can be
estimated straightforwardly based on information that is likely to be avail-
able, for example the statement of maximum permissible error (MPE) for
measurement of length for the CMM. The MPE statement says that the
difference between estimated distance d derived from CMM measurement
and the true distance d is bounded by a linear function of distance:

|d—d| < A+d/B.

The MPE statement characterises CMM (length measuring) behaviour using
two parameters A and B. The MPE statement can be re-interpreted in terms
of uncertainty u(d) associated with distance measurement,

Ku(d) < A+ d/B, (L3)

where K (typically K = 2 or K = 3) ensures that the probability of ex-
ceeding an MPE statement is suitably small. Given any point cloud ma-
trix Vx = Vx(o) it is very straightforward to evaluate the uncertainty
u(d;j) = u(d;j|lo) associated® with the measurement of the distance be-
tween any two points x; and x; and therefore check if the variance matrix
Vx (o) is consistent with the MPE statement. These issues are considered
in detail in section 1.4.

3The notation u(d|o) means the standard uncertainty associated with d, given the
values o of the statistical parameters.
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The a priori method is being used to estimate the uncertainty contributions
from the various influence factors, not to evaluate or estimate (and correct
for) the influence factors themselves. This means that some of the com-
plexity of error correction can be avoided. Most specific measuring tasks
involve converting a set of measured coordinates to a small number of fea-
ture parameters, such as determining the radius of a cylinder from a set of
point coordinates. The uncertainties associated with the computed param-
eters depends on the uncertainties associated with the point coordinates as
encoded in the associated variance matrix. While the true variance matrix
associated with the point cloud may be difficult to evaluate, a reasonable
approximation can be determined using prior information and this approxi-
mation is likely to be sufficient to estimate uncertainties associated with the
derived features.

MPE implies statistical correlation associated with a point cloud

If the MPE statement is a plausible characterisation of the length measuring
capability of a CMM, then it can be used to guide the assignment of the
statistical parameters used to evaluate Vx. The form of the MPE statement
implies that the uncertainty associated with distance measurement has some
dependence on the size of the distance. This fact immediately implies that
the point cloud variance matrix Vx is not a diagonal matrix and that uncer-
tainties associated with the coordinates x; are statistically correlated. Such
correlation is to be expected since the point coordinates depend on a number
of common influence factors such as scale and squareness effects. For this
reason, the a priori method described here is based on the full multivari-
ate version of the law of propagation of uncertainty (LPU) summarised by
(I.1). Even if the variance matrix Vx associated with the point cloud can
be approximated by a diagonal matrix, the variance matrix V4 associated
with the derived features a will be a full matrix and often represents strong
correlation between different estimated parameters.

1.2.6 Main statistical parameters of the a priori method

The implementation of the a priori method described in this report involves
the following main statistical parameters o = (0r, 0pQ,0s,035,4, O’Q)T, O'kP =
(apo,k,agk)T and A = (Apr, Agr, Ap) | associated with the main influence

factors listed in section 1.2.3. The a priori information that can be used
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to assign them is also discussed. Given values for these parameters, the
point cloud matrix Vy = Vy (o, 0", X) associated with a (proposed) set of
measurements xi1., can be evaluated directly propagated through to any
derived features.

Repeatability (R)

Repeatability is characterised by one statistical parameter or which rep-
resents the standard deviation of statistically independent random effects
associated with each coordinate measurements. The standard deviation
represents the likely variation in measured point coordinates if the same
measurements were repeated under the same conditions. Repeatability con-
tributes directly to the estimate of A in an MPE statement but has no
distance-dependent component and does not contribute to B. A prior esti-
mate of o can be derived from repeatability experiments or estimated from
the MPE statement. In order to be consistent with the MPE, op < A/K
where K as in (1.3).

Repeatability influences all derived features including position, size and form
error. The influence of repeatability on estimates of position and size are
reduced as more measurements on an artefact are taken.

Probe location/qualification effects (PQ)

Probe qualification effects are characterised by one statistical parameter
opg which represents the standard deviation of statistically independent
random effects associated with estimation of the probe offset vector p. A
procedure for estimating opg for probe qualification experiments is given
in section 1.3.4. Probe qualification contributes directly to the estimate
of A in an MPE statement but has no distance-dependent component and
does not contribute to B. Probe qualification effects can contribute to all
derived features including position and, if multiple probes are used, size and
form error. If only one probe offset is used then probe qualification effects
do not make a significant contribution to derived features. The influence
of probe qualification effects on derived features are mot reduced as more
measurements on an artefact are taken.

I-11



EUCoM D2 Report A Priori (type B) evaluation Method B1

Scale and squareness effects (S)

Scale and squareness effects are characterised by three statistical parameters
05, 05,4 and og. The first, og, represents the standard deviation associated
with a global scale effect, the second g, represents the standard deviation
associated with independent scale effects associated with each axis, while o¢
represents the standard deviation associated with independent squareness
effects.

Scale and squareness effects contribute directly to the estimate of B in an
MPE statement but not to A. Scale and squareness effects influence all
derived features including position, size and form error. The global scale
effect makes negligible contribution to form error. Scale and squareness
effects model non-isotropic CMM behaviour since squareness effects only in-
fluence length measurements that are not aligned with an axis. Section 1.4.8
considers how these statistical parameters can be estimated from an MPE
statement and how they are constrained by the value of B.

Geometric error, location effects (ET)

Geometric errors associated with location effects correspond to local scale
and straightness effects for each axis, similar to those that appear in a CMM
kinematic error model [32]. It is assumed that the CMM has already been
corrected for kinematic errors and the location effects arise from the residual,
uncorrected, kinematic errors that arise due to changes in the measuring
environment, for example. The fact that the location effects correspond to
residual, uncorrected errors means that there is no requirement to reflect
the axis-upon-axis build up of errors that are present in standard kinematic
error models.

The location effects are associated with two statistical parameters ogr and
Apr. The first, ogp, represents the standard deviation associated with
all local scale and straightness effects. The second, Agr, is a length scale
parameter that controls the smoothness of the model for the location effects.
If Agr = 0, then the effects are modelled as independent random effects
and make the same type of uncertainty contribution as repeatability effects.
If Mg is of the order of the length L,,.x of the largest diagonal of the
CMM, then the effects vary approximately linearly over the working volume
and make a contribution similar to scale and squareness effects. A value
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of Agr = Lmax/5 is appropriate in the absence of other information and
models scale and straightness errors over short to medium length scales.

Spatially-correlated location effects contribute to both A and B in an MPE
statement, with the balance depending of the value of Agp, with smaller val-
ues of Agp associated with a bigger contribution to A. Spatially-correlated
location effects contribute to all derived features, including position, size
and form error. The value of ogr can be estimated from measurements
of calibrated artefacts with low form errors such as straight edges or ring
gauges, or assigned using expert judgement.

Geometric error, rotation effects (ER)

Geometric errors associated with rotation effects correspond to local roll,
pitch and yaw errors for each axis, similar to those that appear in a CMM
kinematic error model. It is assumed that the CMM has has already been
corrected for kinematic errors and the rotation effects arise from the residual,
uncorrected, kinematic errors that arise due to changes in the measuring
environment, for example. The rotation effects are associated with two
statistical parameters ogr and Aggr. The first, cggr represents the standard
deviation associated with all local rotational angles modelling the non-ideal
rotational motion of the CMM. The second, Agg, is a length scale parameter
that controls the smoothness of the model for the rotation effects. If Agr =
0, then the effects are modelled as independent random effects and make
the same type of uncertainty contribution as repeatability effects. If Agg is
of the order of the length L.y of the largest diagonal of the CMM, then
the effects are variance approximately linearly over the working volume and
make a contribution similar to scale and squareness effects. A value of
AET = Lmax/5 is appropriate in the absence of other information. If only
one probe is used, rotation effects make a similar contribution as location
effects.

Spatially-correlated rotation effects contribute to both A and B in an MPE
statement, with the balance depending of the value of Agg, with smaller val-
ues of AgRr associated with a bigger contribution to A. Spatially-correlated
rotation effects contribute to all derived features, including position, size
and form error. The value of oggr can be estimated from measurements us-
ing an autocollimator or from measurements of calibrated artefacts with low
form errors such as straight edges or ring gauges, or assigned using expert
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judgement.

Probing effects (P)

The a priori method includes probe radius effects and probing effects that
depend on probing direction. The probe radius effects are characterised by
op, that represents the standard uncertainty associated with the probe ra-
dius. The probing effects that depend on probing direction are associated
with two parameters. The first, op, represents the standard uncertainty
associated with spatially-correlated probing effects, while the second, Ap,
gives the spatial correlation length (relative to distances on the unit sphere)
associated with the probing effects as a function of probing direction. The
spatial correlation means that the probing effects are the same or similar if
the probing directions are the same or similar (and cancel out for unidirec-
tional length measurement) but that probing directions that are significantly
different (and in particular in opposite directions) are uncorrelated (and do
not cancel out for bi-directional length measurement).

Probing effects will be likely be different for different probe offsets and it
may be advisable to assign different values of op, and op for different probe
offsets. A value of Ap = 0.5 is appropriate in the absence of other informa-
tion.

Probing effects contribute mainly to A in an MPE statement. Probe ra-
dius effects contribute to the size of derived features while probing effects
contribute mainly to the form error associated with derived features.

I.2.7 Assigning statistical parameters based on an MPE state-
ment

The statistical parameters described above (o, o and A) can be related to
the MPE statement through the evaluation of the uncertainties associated
with distances between points. The relationship enables the MPE statement
to be used to derive plausible values for the statistical parameters and rule
out choices of parameter values that are not consistent with the MPE state-
ment. Such an approach is described in section 1.4.8 so that the uncertainties
associated with derived features generated from measurements x1.,, can be
estimated on the basis of an MPE statement alone. However, there are po-
tentially significant limitations in basing estimating CMM uncertainties on
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the basis of length measuring capability alone; see section 1.2.9 below.

I1.2.8 Assigning statistical parameters based on a posterior:
information

Measurements of the same artefact in a number of different positions can be
used to generate estimates of the repeatability component of CMM uncer-
tainty and the component arising from geometric errors and other influence
factors. The approach described in [39, 40] uses an analysis of variance
methodology [36] to separate out and evaluate the contribution from re-
peatability effects and geometry effects. These estimates can be used to
derive plausible values for the statistical parameters following similar prin-
ciples to that for estimating them from an MPE statement.

1.2.9 Length measuring capability and three-dimensional mea-
surement capability

This section illustrates the fact that CMM behaviour is not characterised by
length measurement capability nor by its behaviour when measuring with
a single probe. The a priori method described in this report attempts to
characterise fully the three-dimensional nature of CMM measurement with
multiple probes.

Length measuring capability does not define three dimensional
measurement capability

The behaviour of a CMM cannot be characterised purely in terms of its
length measuring capability, even if the length measuring capability is known
completely. In general, length measurement capability provides only limited
information about other derived features such as cylindricity, etc. In sec-
tion 1.4.3, it is shown how a combination of independent axes scale effects
along with squareness effects provide exactly the same length measuring
capability as that arising from a single global scale effect. Therefore, it is
possible that two CMMSs with exactly the same length measurement capa-
bility can perform significantly differently on other measurement tasks, such
as the measurement of a ball plate [15]. It follows that an MPE statement
can only be used to provide a plausible characterisation of CMM behaviour
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and therefore plausible point cloud variance matrices. In deriving estimates
of the statistical parameters described above in section 1.2.6 from an MPE
statement, there is a set of possible assignments that are potentially equally
consistent with the MPE statement and it is as desirable to choose a set
that is likely to be representative of a large class of CMMs. For example, a
model in which there are independent axis scale errors and squareness errors
covers a far larger class of CMM behaviours than a model for which there
is only a single global scale effect.?

Measurement with a single probe does not define three dimen-
sional measurement capability

The following example shows that completely characterising the behaviour of
a CMM measurement using a single probe offset does not characterise CMM
measurements using multiple measurements. In particular, experiments to
estimate the kinematic errors of a CMM must involve multiple probe offsets

[8].

Suppose a CMM has an error behaviour determined by roll about each axis
that depends linearly on the length of travel along the axis. This behaviour
can be modelled as

T = x + R(kx)p,

where x is the true position of (a fixed point on) the probe assembly, p is the
probe offset (from the fixed point) and & are the CMM coordinate measure-
ments (scale readings), R is the linearised rotation matrix corresponding to
roll about each axis given by

1 —z
Rx)=| 2 1 —=x |,
-y x 1

and k ~ 0 is a parameter determining the rate of roll. Then
T=x+ R(kx)p=x+p+rxxp=R(—kp)x+p, (L.4)

where & x p is the vector cross-product of  with p. The relationship (1.4)
shows that measurements of an artefact using a CMM with isotropic axis

4A potentially useful approach to determining a set of representative values of the
statistical parameters would be to find, amongst all values consistent with the MPE state-
ment, the values that maximise some measure of entropy [34] (or randomness) associated
with a point cloud variance matrix
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roll, i.e., having the same rate x of roll along each axis, are the exactly same
as those of the same artefact rotated by R(—xp) by a CMM with no axis roll
(to first order). This equivalence means that, irrespective of measurement
strategy and calibration information, a CMM cannot be completely charac-
terised from the multiple measurement of calibrated artefacts such as ball
plates and step gauges unless measurements are taken of the same artefact
in the same position using more than one probe offset. In general, at least
three probe offsets are required; by analogy, the location of three points are
needed to track the position of a moving rigid body.
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1.3 Point cloud uncertainty evaluation for CMM
measurement

This section describes of models associated with the various influence factors
that affect CMM behaviour listed in section 1.2.3 and how uncertainties
associated with these factors can be propagated through to point cloud
variance matrices using the law of propagation of uncertainty (I.1).

I.3.1 A general model of CMM measurement

A general model of CMM measurement has the form

i =z +e +e€, €¢cN(0,0) (L.5)

where x; is the measured coordinates, x}

7 is the true point coordinates, e;
is a systematic effect and €; is a random effect, i = 1,...,m. The sys-
tematic effect e; is taken to be approximately constant over the duration
of a measurement of a part while the random effect €; represents (a sum
of) effects that change over a very short timescale, effectively modelling the

repeatability component of the CMM.

We generalise the model in (I.5) to cater for the possibility that the mea-
surements may be subject to a number of independent systematic effects
that combine additively to influence the measurement result, e.g.,

T, =x, +e,ptecte.pte. (1.6)

We assume that the behaviour of the systematic effects can be described by a
statistical model which allows us to calculate (or estimate) the contribution
to the variance matrix Vx associated with @x1.,, from the various effects. We
denote by Vxp, the variance contribution arising from ej.n, g, etc. For the
model in (I.5), the variance matrix Vx can be decomposed as

Vx =Vxie + Vxr,

where Vg is the variance contribution from the effects €y.,. For the model
in (I.6), the variance matrix Vx can be decomposed as

Vx =Vxip+ Vxic + Vxip + Vx|r-

In both cases, we denote by Vx| the diagonal variance matrix representing
the variance contribution from the random effects €1.p,.
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1.3.2 Propagation of variances

The law of propagation of uncertainty, the basis of the GUM [2], in its
multivariate setting [7, 4] describes how uncertainties associated with the
measured coordinates in (I.6) can be evaluated on the basis of uncertainties
associated with the systematic and random effects. Suppose effects e; g =
ei(b), i = 1,...,m, are specified by np parameters b = (by,...,b,,) ", and
that a statistical model for b specifies the ng x np variance matrix Vg
associated with b. If Gx|p is the 3m X np sensitivity matrix of @1, with
respect to b constructed from 3 X np matrices
a.’L‘i
Gx|pi = YA
then
Vg = GX|BVBG)T(‘B.

If Vg can be factored as Vg = KBKg where Kp is an np X pg matrix (usu-
ally pp = np), for example, from an eigenvalue decomposition or Cholesky
decomposition [1, 26], then Vx| p can be factored as

Vxip = KX|BK)T(|37 Kxp=Gx|pKB.

If Vg is a diagonal matrix, then we factor Vp as Vg = D%, where Dp is also a
diagonal matrix. The jth diagonal element dp ; is the standard uncertainty
associated with the effect b;.

The role of the sensitivity matrix G'x|p can be explained as follows. If the
parameters b describing the systematic effects are perturbed by Ab, then
the resulting perturbation on ej.,,, and hence ®i.,, is given by Axy.,, =
G x|BAb, to first order.

Often we are interested in quantities derived from a set of point coordinates.
As a consequence of the chain rule in calculus, if a = (a4, ..., a, A)T depends
on 1., and G4 x is the ny x 3m sensitivity matrix of a with respect to
1., then the n 4 X np sensitivity matrix G A|B of A with respect to influence
factors b is given by
GaB = GaxGx|Bs

and the ng X n4 variance matrix V4 g describing the variance contribution
to a arising from factors b is given by

Vag = GA\BVBGLB = KA\BKLBa Kap=GapKs.
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If the systematic effects b are perturbed by Ab, then the derived parameters
a are perturbed by Aa = G 4pAb, to first order.

An important example of quantities a derived from point coordinates 1.,
is where a are parameters associated with a Gaussian associated feature to
T1.m, €.8., the least squares best-fit cylinder to a data set; see section 1.5.2.

I.3.3 Random/repeatability component (R)

The simplest model of CMM behaviour is to consider only a random re-
peatability component constant throughout the working volume:

xi =z +€, €cN(0%]). (L.7)

This model has only one statistical (hyper-)parameter, og. The variance
matrix Vx associated with a set of measured coordinates x; is simply

Vx = Vg =o0%] = D%, Dg=ogl,

where represents the 3m x 3m identity matrix with ones on the diagonal
and zeros elsewhere. Despite its simplicity, this model is useful to deter-
mine how the uncertainties associated with geometric features depend on
representative estimates of the CMM accuracy as represented by og.

The uncertainty u(d;;) associated with the distance d;; = ||x; — x;|| is given
by
u2(dij) = 20%,

and is independent of the length of the distance d;;.

1.3.4 Probe qualification effects (PQ)

For error models with an explicit dependence on the probe offset p;,, the fact
that the probe configuration geometry is usually determined in probe qual-
ification experiments [?] means that there will be uncertainties associated
with estimates of the offsets. If x; is a measurement using the kth probe,
then the uncertainty contribution arising from the probe qualification can
be modelled as

xi=x; +p,+ epQk t+ €, epgk € N(O0, UI%Q,kI)’ (1.8)
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where p. is the calibrated probe offset vector for the kth probe and epq i
models the difference between the actual probe offset and its calibrated
value, £k = 1,...,np. An important feature of the model is that all mea-
surements with the kth probe are associated with the same systematic effect
epq,k- The variance contribution associated with probe qualification is given
by

Vxipg = GX\PQVPQG)T(UDQ

where Vx| pg is the 3np x3np variance matrix associated with the systematic
effects epg r and Gx|pg is the 3m X 3np sensitivity matrix. The variance
matrix Vpg is a diagonal matrix with the 3 x 3 matrix J%Q,kl in the kth
diagonal block. If the ith measurement is associated with the kth probe,
then

Gxpo(3i —2:3i,3k —2:3k) =1

the 3 x 3 identity matrix, and all other elements in these three rows are zero.

Estimating the variance associated with probe qualification effects

[This section needs some references]

Probe qualification according to ISO XXX involves measuring a reference
sphere with a number of probe offsets p;, and for each probe estimating the
centre of the sphere, yielding estimates ¢, k = 1,...,np. A measure of the
spread of ¢; provides an estimate of the uncertainty contribution from probe
qualification effects. One measure specified by ISO XXX is the diameter
Djpros of the minimum circumscribing sphere. Calculating the minimum
circumscribing sphere to data can be posed as an optimisation problem to
minimise a nonlinear function subject to linear inequality constraints. Such
problems can be solved using standard optimisation optimisation techniques
[24] but these algorithms are not entirely straightforward to implement. An
alternative measure [?] is to use the maximum pairwise distance

Dyp = — .
MP 1,3115}3; ek, — cr, ||
If npg = 2, then Dysp = Dyog; if npg = 3 then Dy p > \/3/4DMCS ~
0.87Dprcs with equality given by three points on an equilateral triangle,

and for npg > 4, dyp > /2/3dyes =~ 0.82Dycs with equality given by
points on the corners of a tetrahedron. Thus, in all cases

Dyp > 0.82D 5.
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We now describe a Bayesian approach for assessing the uncertainty contri-
bution associated with probe qualification. It based on the model

Ck EN(C7¢E)%\?I)7 ngQ:l/O-QPQ’ k=1,...,np,

where the parameter ¢ = 1 /JI%Q represents the opg in the model®. The
model is such that the posterior distributions for ¢ and ¢ can be determined
analytically [23]. Given non-informative prior p(c) 1 for ¢ and a Gamma
prior

¢PQ ~ G(n0/2, nOUJQDQ,O/Q)v

then the posterior distribution for ¢pgl{cy} is the Gamma distribution
G(n/2,n5pg/2) where

nogo + 3TLP—3 &2
n=mng+3np — 3, 6—12;@: PQ.0 (_ ) ,
n
1 &
~2 . -
k=1
and
1 &
C = — Cj.
[

It is seen that 6%@ is a weighted average of the prior estimate U%Q’O and
the estimate & of the standard deviation of the residuals associated with
the estimate ¢, the mean of {¢;}. In this way, results from previous but
similar probe qualification experiments can be incorporated into a current
experiment. The quantity opg can be taken as an estimate of opg. We
note that it is always defined if np > 2. If np = 1, then no new information
about opg is generated.

I.3.5 Scale and squareness effects (S)

Scale and squareness effects are special cases of a class of models in which
the systematic effects in (I.5) are taken to be functions e; = e(x;,b) of
location x and additional parameters b = (by,...,b,)" that model some
aspect of CMM behaviour. If Vg is a prior assignment of the p X p variance

SWorking with ¢ rather than opg leads to simpler expressions for the statistical dis-
tributions involved.
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matrix associated with b and Gx|g is the matrix 3m X p of sensitivities of
e;, 1 =1,...,m, with respect to b, then the variance contribution of b to
the variance associated with x1.,, is given by

T
Vxie = Gx|sVsGxs-
From practical experience, it is well known that scale and squareness effects

are a a major component of CMM behaviour. The model below incorporates
scale effects and three squareness effects through

where
(1 + bag + bzz) bay by
B(b) = 0 (1 + baa + byy) by
0 0 (1 + bag + b22)

depends on effects b = (bqq, bz, byy, b2z, by, baz, byz)T. The term b,, models
a global scale effect while b,;, by, and b.. model scale effects for each axis
and bgy, by, and by, model the squareness effects. The 3m x 7 sensitivity
matrix Gx|g for this model is assembled from 3 X 7 matrices of the form

z; x; 0 0 wy' 2z O
G(x;) yr 0y 0 0 0 zf (I.10)
zZ 0 0 z 0 0 O

N
S

In practice, ] is unknown but can be approximated accurately by the mea-
sured coordinate x; and the sensitivity matrix is approximated by

z, x; 0 0 9y 2z O
Gi = G(mz) = Y 0 Y 0 0 0 Z; . (I.ll)
zz 0 0 2 0 0 O

The model is completed by specifying the variance matrix Vp associated
with the scale and squareness effects, e.g.,

[02 0 0 0 0 0 0]
0 o, 0 0 0 0 O
0O 0 o, 0O 0 0 O
V=] 0 0 0 o 0 0 O (L.12)
0O 0 0 0 o4 0 O
0 0 0 0 0 o3 O
00 0 0 0 0 g5 |
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If we assume that the individual axis scale effects are associated with the
2

. 2 _ _ 2 _ 2 . .
same variance so that 05y = 08y = 05, = 054 the model is associated
with four statistical hyper-parameters o = (05, 05,4,0Q,0 R)T. Given a data
point x;, the variance matrix Vg, = Vg, (o) due to scale and squareness

effects is given by

x%aéya + (2 + z?)aé 0 0
Va, = olaa] + 0 vol,+ 720y 0
0 0 Zo%,

For a working volume of [~ L, L]3, the maximum variance in a coordinate of
a point is given by L?(c% + a?g’ ot 20(29). This maximum can be compared
with statements of maximum permissible error.

Over modest working volumes® over which straightness and rotational effects
are not significant, the scale and squareness model is a useful approximation.
For this model, the variance matrix Vx associated with a set of coordinates

is given by
Vx = GX|SVSG;|—(‘S + 0'12:51, (1.13)

where Gy |5 is the 3m x 7 sensitivity matrix constructed from G; defined as
in (I.11) and Vg typically has the form in (1.12).

Scale and squareness effects for multiple probe configurations

For measurements involving multiple probe offsets p,, £ = 1,...,np, the
measured coordinates x; are related to the true point coordinates «; through
a model of the form

x; = B(b)x; + pr(; + €i-
For this model, the sensitivity of a&; with respect to b is approximated by
Gi = G(zi — prp))

with G defined as in (I1.10).

5See section 1.3.9 for an extension of this model more appropriate for larger working
volumes.
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Scale and squareness effects in two dimensions

In two dimensions, the model has the form

x; = |: (1+baa+bmr) ba:y

0 (0t bt by) ] Tl + € (1.14)

depending on effects b = (baq, bsa, byy,bey T. The 2m x 4 sensitivity matrix
G x|p for this model is assembled from 2 x 4 matrices of the form

ol moxm 0y
Gl—{yi 0 s 0], (I.15)

variance matrix Vp associated with the scale and squareness effects typically
of the form

O'% 0 0
0 o2, 0 0
VB - 0 0 0_%721 0 (116)
2
0 0 0 q

1.3.6 Kinematic error model

The kinematic error model for a CMM [32, 41] involves firstly the specifica-
tion of 6 error functions associated with the 6 degrees of freedom motion of
a rigid body along an axis, e.g., (€42 (%), €xys €22 (%), Taz (), 7oy (), 722 (2)) T,
where e;, models the scale error along the axis, e;, the straightness error
in the xy-plane, and r,, is the rotation about the z-axis, in this case, roll.
Thus there is a scale error function, two straightness functions and three
rotation functions corresponding to roll, pitch and yaw. There are six such
functions associated with each axis, 18 in all, sometimes augmented by 3
scalar squareness parameters, depending on the convention for specifying
the straightness error functions. These error functions are usually modelled
in terms of empirical functions such as polynomials or splines, the coefficients
of which are collectively represented by parameter vector b. The combined
contribution of these 18 4+ 3 errors to the CMM measurement can be written
as

x;=x; +e(x;,b)+ R(x;,b)p + ¢ (I.17)

involving a translation component e(x},b) and a component R(zx, b) mod-
elling angular errors where R is a rotation matrix depending on b and lo-
cation x*. The rotational component also involves the probe offset p, the
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vector pointing from the centre of rotation of the probe housing to the probe
tip centre. The explicit dependence on the probe offset allows different probe
configurations to be modelled using the same kinematic error functions.

Estimates of the function coefficients b along with their associated variance
matrix can be determined from repeated measurements of calibrated arte-
facts such as ball or hole plates [9, 12, 31].

If Vp is the variance matrix associated with b (derived from a ball plate
exercise or otherwise) and G x|B 1s the sensitivity matrix of @1.,,, with respect
to b, then the variance matrix associated with x1.,, is given by

VX == GX|BVBG;|);|B

The full kinematic error model and its use in generating variance matrices is
very much a specialist undertaking and perhaps not suitable for developing
a priori methods. Typically, each error function is defined in terms of 5
or so parameters, e.g., polynomial coefficients, so that the complete error
model involves of the order of 100 parameters b. Consequently, the assigning
the associated variance matrix Vg involves estimating of the order of 10%
elements. However, the kinematic error model can be used to assess the
ability of simpler a priori methods to capture the uncertainty characteristics
due to non-ideal geometry.

1.3.7 Gaussian process models incorporating spatial correla-
tion

Gaussian process (GP) models [11, 38] can be used to develop empirical
models of behaviour that do not explicitly involve sets of basis functions
such as polynomials or splines. Spatial or temporal correlation associated
with data points (x;, e;) takes the form

corr(e,e’) = k(x, z'|o)

where k is a correlation kernel depending on statistical parameters o. Often
k depends on x and @’ through ||z — «'||, e.g.

cov(e,e') = k(z,x') = oh exp{—||z — 2/||>/\%}. (I.18)

The strength of the correlation between e and e’ dependence to the distance
between & and x’: the closer x is to @', relative to o9, the stronger the
correlation between e and €’
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MPE and spatial correlation

The use of spatially-correlated error models can be motivated in terms of
consequences of the statement of maximum permissible error (MPE) in mea-
suring length. In measuring length along a single axis, say the z-axis, sup-
pose the basic statistical model for the measurement of two points is

ry=1x]+el+e, z2=2x5+er+ €,

with
€1,6€2 EN(O,U%), €1,€2 E/\/’(O,J?{).

The MPE statement implies that the measured length dqs is related to the
true length d;o according to

|12 — d1a| < A+ dy2/B.
The MPE implies
lea —e1 + e —€1| < A+ di2/B
so that 2012% < A2, and for o < 0f,
e1 — (A+di2/B) <ey<e;+ (A+di2/B),
i.e., the similarity of e; and eo depends on the spatial separation dis.
We can also use a model of the form
r=a"+e(@) te~a*+e(x)+e, ecN(0,0%)

where e(x) is an error function with |e(x)| < 20g that encodes the local
scale error. (The same concept can be applied to straightness errors, etc.)
The MPE implies

le(ze) —e(z1) + €2 —€1| < A+ |xg —x1|/B

so for op < op and 1 # X2,

A 1
_’xg—l'l‘ B’

e(zz) — e(x1)
o — I1

In other words, the slope of the error function e(x) cannot be too large
imposing some measure of smoothness on the error function e(x) in order to
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be consistent with the MPE statement. From this point of view, in the MPE
statement, A quantifies effects over short length scales, while d/B controls
the size and smoothness of effects over longer length scales.

Figures 1.1-1.4 give examples of spatially-correlated error functions gen-
erated using the correlation kernel in (I.18) with o = 0.005 mm and
Arp = 1000 mm, 500 mm, 200 mm and 100 mm

0.015 T T T T T T T T T

0.01 1

0.005 1

e(x)/mm
=

-0.005

0.01r1 1

20.015 L \ L \ \ \ \ \ \
0 100 200 300 400 500 600 700 800 900 1000

x/mm

Figure I.1: Examples of spatially-correlated error functions generated using
the correlation kernel in (1.18) with o = 0.005 mm and Ay = 1000 mm.

A GP model can be used to supplement a parametric model e(b) for the
systematic effects, e.g., a scale and squareness error model considered in
section 1.3.5, in which the role of the GP model is to simulate behaviour
not captured by the parametric model, such as uncorrected kinematic errors
[17, 30]. The significant advantage of GP models for an a priori method
is that the GP model can mimic the behaviour of empirical models in a
non-parametric way and can be defined by a small number of statistical
parameters. The point cloud variance matrices Vx are constructed from
the point cloud @.,, itself along with a few statistical parameters. In the
models below, the geometric location errors, rotational errors and probing
errors can each be modelled by specifying only two statistical parameters
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0.015 T T T T T T T T T

0011 1

0.005 1
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-0.005

-0.011 1

0.015 \ \ \ L \ L \ L \
0 100 200 300 400 500 600 700 800 9S00 1000
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Figure 1.2: As figure 1.1 but with A\ = 500 mm.

each. By contrast, kinematic error models, section 1.3.6, typically involve
100 or so parameters.

GP models for location errors (ET)

We can apply a GP model for CMM behaviour as follows with
ri=x +e +¢€;, (1.19)

where the systematic effects are spatially (and sometimes temporally) corre-
lated with the with the systematic effects e; spatially correlated. In general,
the covariance applies only to the same coordinates, with the z-, y- and
z-coordinates of e mutually, independent. The covariance with e, with e/,
could be modelled as

cov(es, €)= k(@,@'|0s) = ofr exp { |l — 2'|*/Apr. ). (1.20)

for example, where Ag7, defines the length scale for the correlation in the
z-coordinate’. Note that in this model, there the strength of the correlation

"The ‘E’ and ‘T’ in ’ET’ are meant to represent the error that acts translationally.
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ximm

Figure 1.3: As figure 1.1 but with A = 200 mm.

in the effects e, depends on the distance || — 2’| in 3D, not the distance
along the x-axis.

Let D be the m X m matrix of distances with
Dij = ||z — x;]|.

The variance contribution Vxr from ej.,, to the x-coordinates of x;.,, is
given by

Vxra. = U%‘T,:c exp {_D2/>‘2ET,95}

where the calculations associated with D are made element-wise. The con-
tribution to the y- and z-components are of exactly the same form. The
matrix Vxr is assembled from Vxr, Vxr, and Vxr ., with all other el-
ements zeros since we assume that the systematic effects associated with
the z-coordinates are independent from those associated with the y- and
z-coordinates®.

8We assume that the GP model relates to uncorrected kinematic errors that are not
likely to have a significant correlation between axes, even if the kinematic errors themselves
are likely to produce such correlation. While the GP model assumes there is no inter-
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Figure 1.4: As figure 1.1 but with Az = 100 mm.

If it can be assumed that the systematic effects along each axis have the
same behaviour, so that opr; = 0pTy = 0ET . = OET, etc., then the model
is specified by three statistical hyper-parameters o = (ogr, Apr, O‘R)T. The
variance associated with any coordinate is U%T. This variance can be com-
pared with statements of maximum permissible error.

GP models for location errors incorporating multiple probes

Suppose that the point cloud 1., is gathered using multiple probes with
offsets p, k = 1,...,np. The measured coordinates x; are related to the
true point coordinates «; through a model of the form

T =T + € + P + €,

where py,(;) denotes the probe configuration associated with the ith measure-
ment, etc. For this case, it is important to note that the spatial correlation

axes correlation, the GP model will model successfully behaviour that does have such
correlation.
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is dependent on ||z} — ||, not ||@; —x;||. For different probe configurations
we have

7 — 25| = [ (i — Preiy) — (@5 — Pry) -
Similar considerations apply to the model for scale and squareness errors

with multiple probe offsets, section 1.3.5, and for GP models for rotation
errors, section 1.3.7, below.

Gaussian process model for rotation errors

The GP models in section 1.3.7 used, perhaps, with a simple parametric error
model can simulate a wide range of plausible CMM behaviour but it relates
only to one probing configuration and do not, without modification, allow us
to evaluate the uncertainties associated with different probe configurations.
An extension of the model is to use GP models to model both the location
and rotation errors:

x;=x; +e + R(a;)p+ €, (1.21)

where a; = (@ 4, ai7y,a¢,Z)T represents three spatially correlated rotation
errors acting on the probe offset vector p through the rotation matrix

R(ay) = R, () Ry (v y) Ry z), (1.22)

the product of rotations about each of the three coordinate axes:

1 0 0 cosay 0 sinay
Ry(az) =10 cosa, —sina, |, Ry(ay) = 0 1 0|,
0 sina, COS iy, —sinay 0 cosay
and
cosa, —sina, 0
R.(a,) = | sina, cosa, 0
0 0 1

We assume that the rotational effects about one axis are independent from
the rotational effects about the other two axes, but other more general
approaches are possible. For measurements involving multiple probes, the
degree of spatial correlation associated with a; and a; depends on

7 — 25|l = [[(®: = Prgiy) — (@5 — Pry)ll-
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If the rotational errors are similar along each axis, then the GP model for
the rotational errors is specified by two statistical hyper-parameters ogg,
and Agp, say”.

The variance associated with location errors for any coordinate is O'%;T. If the
maximum probe length is P, then the maximum variance associated with
rotational effects for a coordinate is given by Pza% - Hence the maximum
variance associated with location and rotation errors for a coordinate is
given by JJZET + PQO'% g+ This maximum can be compared with statements
of maximum permissible error.

We note that if the variance matrix associated with o = (o, oy, a,) with
a = 0 is Vg, then the variance matrix Vp associated with R(a)p, with
R(a) as in (1.22), is given by GV G " where

0 Pz —Dy -
G = —Pz 0 Pz |, P= (pxapyapz) . (1'23)
Py —Pzx 0

As for the case of the kinematic error model, the explicit dependence on the
probe offset allows different probe configurations to be modelled.

If V4R is the 3m x 3m variance matrix associated with aj.,, determined
from the correlation kernel (or otherwise), then the variance contribution
Vx g to the measurements xi.,, is given by

Vxr = GxrVarGX )

where Gxpg is a 3m x 3m block-diagonal matrix. If the ith measurement
is associated with the kth probe, then the 3 x 3 ith diagonal is equal to
G, where Gy is constructed from p, as in (1.23). Although the model
fot the rotation angles about the three axes are mutually independent, the
sensitivity matrices Gx g in general will introduce correlation between the
effects applied to the z-, y- and z-coordinates.

Rotational errors and probe qualification effects

The model for rotational errors can be combined with that for probe qual-
ification errors as follows. The model in (I.21) is a simplification of the

9The ‘E’ and ‘R’ in ’ER’ are meant to represent the error that due to rotation effects.
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following model. Firstly, we have
s; =x; + R(a™)p*

relating a point s* on a surface to the point in the CMM working volume
x; offset from s} by the true probe offset p* rotated by R(a*). The mea-
surements x; of ] are modelled as

*
T, =T; +€ + €,

and s; is estimated by

8; = T; + p,

where p is the estimate of the probe offset determined in a probe qualification
experiment. Combining these two equations, we have

si=x; +e +e€+p,
=s; —R(a")p" +pteite,

which relates the true point on the surface to its estimate. For a* near zero
and p near p*

0 —a o
p—R@)p*~p-p"—| af 0 a; |p
—a; oy 0

showing that separation in to probe qualification effects and rotational er-
rors.

Isotropic models for spatially correlated rotational errors

If the variances spatial correlation lengths are the same for each axis and
equal to G% r and Agg, respectively, then the variance matrix Vxpg is con-
structed from 3 x 3 blocks of the form

—d2. /22
‘/;] = U%R (eXp dz]/)‘ER) Gk(Z)G];r(J)7 (124)
where Gy is defined as in (1.23).
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1.3.8 Gaussian process model for probing effects

The operation of the probe system will also to make a variance contribution.
While the CMM geometric errors are likely to vary smoothly with location,
the probing errors are likely to vary smoothly with probing direction where
the probing direction is usually designed to be normal to the surface being
probed. We can augment the model in (I.19) to one of the form

xTr; = m;‘ +e; + (€p70 + ep,i)ni + €, (125)

where ep is a fixed offset representing the the uncertainty in the estimate
of the probe radius, ep; is a spatially correlated systematic effect associated
with probing and m; is the unit normal probing direction. The correla-
tion between effects ep; and ep; depends the spatial separation ||n; — n |
if both measurements are made using the same probe. We assume that
probing effects associated with different probes are statistically independent
(although there may be situations where some statistical dependence would
be expected). We assume that ep is associated with variance cr%go and ep;

with variance 0%3 and length scale parameter Ap. If Vpp is given by
. . —_ 2 .. 2
Vop(i, j) = o, +ope Pl P dpy; = nj =), (1.26)

then the variance contribution Vx p associated with probing effects is given
by
Vxp = NVppN'"

where NNV is the 3m x m block diagonal matrix with n; in the ¢th diagonal
block.

1.3.9 Spatially and temporally correlated systematic effects

This section discusses some possible extensions to the models described
above.

Suppose that & = *+e(b) 4+ € where e(b) are systematic effects specified by
parameters b. For measurements that naturally arise in distinct blocks X,
q = 1,...,nq, representing measurements of different component surfaces
or measurements taken over separate time intervals, it may be more realistic
to assume that for each X, the effects e are specified by different b, but
that the parameters b, are correlated with each other and the strength of
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correlation depends on where in the working volume the measurements are
made or at what times the measurements were made. We can use Gaussian
process models to represent this concept of spatio-temporal correlation. One
simple approach is as follows. We assume that to each block of measurements
X, are assigned a representative location &, and a representative time t,. For
example we could take &, to be the centroid (mean) of the point coordinates
X, and t, to be the mean time at which X, was gathered. The correlation
coefficient pg, relating b, to b, can then be calculated according to pg =
k(xg,,Z,, tq, t,) for some correlation kernel k, e.g.,

A — 7d2 )\2 7t2 2
k(ccq7$7"7t(bt7")\577—) =€ qr/ Se qT/T )

where
dgr = |l&r — g, tor = [tr — t4l,

and A\g and 7 are spatial and temporal correlation lengths, respectively. If Vg
is the ng xn g variance matrix associated with one set of effects parameters b,
then the (npng) x (npng) variance matrix associated with by.,,, is a tensor
product of Vg with R, the matrix of correlation coeflicients with submatrices
VB,qr = pgrVB. In practice only R and Vg need be stored, rather that the
complete variance matrix. If Gx p, is the sensitivity matrix of X, with
respect to by, then the variance matrix associated with the complete point
cloud is a block matrix with blocks

T
VXqT|B - GXQIBVBVqTGX7TI

Temporal correlation can also be introduce to GP location, rotational and
probing errors to model the fact that these effects may change over time and
the degree of change depends on the temporal separation.

I[.3.10 Length scales associated with the different influence
factors

The influences factors considered in this report (section 1.2.3) can be thought
of as operating at different length scales. Effects associated with repeatabil-
ity essentially operate a near zero length scales: knowing the effect at one
location provides little information about the effect at a location nearby.
Spatially-correlated location and rotation errors operate at medium length
scales, controlled by the parameters Agr and Aggr. Scale and squareness
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effects operate at length scales of the order of the largest diameter of the ma-
chine working volume. Probe qualification and probe radius effects operate
at infinite length scales in the sense that the effects are constant through-
out the working volume. Effects that depend on probing direction also are
associated with an infinite length scale in the sense that they are constant
along any probing direction.

I.3.11 Combining effects

We can write the point cloud variance matrix Vy incorporating all the effects
considered above as

Vx =Vxr+Vxr+Vxp+ GX‘pQVpQG;(‘PQ + GX|SVSG}|S + Vg, (1.27)

where the first three variance matrices or the right are derived from spatially
correlated location, rotation and probing effects, and the second three are the
contributions from probe qualification effects, scale and squareness effects,
and independent random effects, respectively. For some cases, not all effects
need to be considered. For example, for measurements using a single probe,
rotational effects and probe qualifications need not be calculated. While
the model does have some degree of complexity, all the variance matrices
can be calculated using direct calculations based on, for example, the point
coordinates, the distances between points, etc. All calculations have been
implemented in spreadsheets, for example.

Contribution to the variances of derived features from different
influence factors

If G4 x us the sensitivity matrix associated with a feature vector a with
respect to coordinates 1., then the variance matrix V4 associated with a
can also be decomposed as

Va=Vaxr +Vaxr+Vaxp+ ..
GA|PQVPQGZ|PQ + GA‘SVBGXIS + GAlXVRGZIX,

where Vy x7 = GA|XVXTG£|X, etc., and Gy = G xGxs, ete. Thus
G 4 PQVPQGzl PO is the variance contribution to V4 arising from probe qual-
ification effects, for example.
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The uncertainty contributions to u(a) from each of the influence factors can
also be evaluated:

u?(a) = upr(a) + upgp(a) + up(a) + upg(a) + ug(a) + uk(a),

where u%,,.(a) is the set of diagonal elements of Vaixr, ete.

Contributions to variances associated with position, size and shape
from different influence factors

Appendix .1 shows how any point cloud variance matrix Vx can be anal-
ysed to separate out the positional, Vpx, size/scale, Vzx, and shape, Vgx,
components. The positional component is that which can be explained in
terms an uncertain frame of reference for the point clouds, the size compo-
nent that which can be explained in terms of an uncertainty global scale
while the shape component essentially is that component remaining. The
shape component is the dominant component in the contribution to form
error. The decomposition into positional, size and shape components can
be thought of as applying three sensitivity matrices Gpx|x, Gzx|x and
GSX |X to Vx:

Vex|x = GPX|XVXG1T>X|X7 Vzxix = GZXlXVXGgX\X’
Vexix = GSX|XVXG:9|—X|X'

These sensitivity matrices can also be applied to the individual variance
contributions arising from the various influence factors, e.g.,

Vexpq = GrxixVxpGpx|x:  Vaxipq = GzxxVx1peGyx|xs
Vsxipg = GSX|XVX\PQng|X7

separates the contribution probe qualification effects make to position, size
and shape uncertainty and may be of interest for measurements involving
multiple probes.

Point cloud variance factorisation

We note that Vy can always be factored as Vx = KK using a Cholesky
factorisation or a eigenvalue decomposition [26]. If Vx is given as

nK
Vi =Y Vi, Vi=KiK),
k=1
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a sum of variance contributions V; that are already factored, then
Vx =KK', K=[K - Kj - K]

It is not necessary that the factor K is square and in general is a 3m X p
matrix. If p > 3m, then a QR factorisation [26] can be used to replace K
by a 3m x 3m factor.

Variance matrix associated with multiple features

It is often the case that multiple features a, are derived from distinct point
sets Xy, ¢ = 1,...,ng. Suppose Vy is the variance matrix associated with
complete set of point coordinates x1.,, ordered so that X7 is associated with
T1:m,, X2 is associated with @y, 1.m,, etc., and Vg = KKT. Partition K
row-wise so that

K

K=| K, |,

| Kang |
so that the variance matrix associated with X, is Vx, = KK J Gy x,
is the sensitivity matrix of features a, with respect to X, then the variance

matrix V4 associated with the complete set of feature vectors A1ng 18

GAl\XlKl

Va=KusK,;, Ki= Ga,x,Kq

L GAnQ‘XnQ KTLQ |

Note that in general V4 will be a full matrix with a4, correlated to aq, due
to their common dependence on systematic effects.
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I.4 Uncertainties associated with distances derived
from point clouds

This section considers how uncertainties associated with a point cloud can
be propagated through to the uncertainties associated the distance between
pair of points.

If an a priori model determines the point cloud matrices Vx (o) associated
with @;.,, in terms of statistical parameters o, then for any pair of points
x; and x; we can calculate the variance associated with the distance d;;
according to

-
2y | M| | M N S
v i) [ —n; } " [ —nj } i = g i)
where V;; is the 6 x 6 variance matrix formed from the 3i — 2 : 3ith and
3j — 2 : 3jth rows and columns of Vx.

Often we are interested in the difference in distances, e.g., in comparing the
distance associated with a test artefact with that associated with a calibrated
reference artefact. Differences in distances also comes into the impact of
CMM uncertainties in form errors, e.g., the uncertainties associated with
the difference in two diameters of a spherical or cylindrical artefact. Using
the same notation

T
nij ’I’Lij
2 _ | TN —MNj5
u (dZ] drs) n V;jrs -n )
] TS
Nys Nys

where Vjj.s is the 12 x 12 variance matrix formed from relevant rows and
columns of V.

[.4.1 Distance measurement: uncertainty contribution asso-
ciated with random effects

IfVy = O‘%I, then
u2(dz-j) = 20%.
If dij = ||l&; — ]| and dys = |l&s — 2|, then

’LLQ(dij — drs) = 40?{.
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Note that these uncertainties depend only on o and are independent of
location and separation of the points.

I.4.2 Distance measurement: uncertainty contribution from
probe qualification effects

We assume that probe qualification effects are modelled as in section 1.3.4:
epqr € N(0, 0%Q7k1).

If z; and x; are measured using the same probe, then the uncertainty contri-
bution to the distance d;; from probe qualification effects is zero. Otherwise

2 2 2
u(dij) = 0pQ k(i) T TPQ k()"
The uncertainty contribution associated with d;; — d,, arises from the term

(e — er))  Mij — (err) — €x(s))  Mrs-

If k(i) = k(j) and k(r) = k(s), then u*(d;; — drs) = 0. If k(r) = k(s) but
(i) # k(j), then

U2(dz’j - drs) = u2(dij) = U%Q,k(i) + U%ka(j)'

If k(i) = k(r) and k(j) = k(s) but k(i) # k(j), then

w(dy — dys) = 2 = 2nfimrs) (oBqun + Thans))

so that
0 < u?(dij —dyps) < 4 (fﬁog,k(i) + UJQDQ,W)) ’

depending on the angle between n;; and n,s. The uncertainty contribution
is zero if m;; = n,s, e.g., when two gauge blocks are measured parallel to
each other with both left faces measured by one probe and both right faces
by the other. The uncertainty contribution is maximised when n;; = n,,,
e.g., when the left face of one gauge block is measured by one probe and
the left face of a second parallel gauge block is measured by the other probe
with the probes interchanged for the right face. If all four measurements are
undertaken by different probes then

u?(dij — dps) = u?(dig) + 0 (drs) = 0P () + TQur() + TPQIK) T TPQs)-

I-41



EUCoM D2 Report A Priori (type B) evaluation Method B1

1.4.3 Distance measurement: uncertainty contribution asso-
ciated with scale and squareness effects

We consider scale and squareness model as in (1.9, involving seven random
effects b = (baas baa, byy, D225 bay, baz, byz)T. Given two data points x; and x;,
let dij = ||z; — x;| and ;25 — x;, yij = yj — yi and z;; = zj — ;. Then the
1 x 7 sensitivity matrix G'pj;; of di; with respect to the scale and squareness
effects e is given by!°

1
_ 2 20 2 L2 o
Gpjij = di; [ di; x Vi Z T TijZij o YijFig } :

If
baa ~ N(0,0%),  baa, by, boz ~ N(0,0%,,),
and
bay: baz, byz ~ N (0,0%).
then
ug(dij) = U%d?j + U‘%”aD%ﬂ + U%Dé, (1.28)
where
D§, = dl% [ + v + 5]
and

1
2 2,2 2 .2 2 .2
DQ T2 [xijyij + T2 + yijzij] .
]

The expression for u?(d;;) in (1.28) shows non-isotropic behaviour in that
the uncertainty depends not only on the distance but also the position of
the points ; and x;. In particular, if ; and x; are aligned with an axis
direction, the cross terms x;;y;; are all zero along with two of x;;, y;; and
z;;. For this case, u(d;j) is given by

u?(dij) = (0% + 05,0)°d;,

and does not have a contribution from squareness effects.

19Strictly, Gp)i; is the sensitivity matrix of d;; = (x; — ®;) ' ni; where ny; = (x; —
x;)/di;. We note that d;; is a signed quantity with d;; = +d;;.
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Two scale and squareness models with the same distance measure-
ment behaviour

See also [15]. From the expressions for u?(d;;) in (1.28) we note that if
O’% = 20§7a = 72, say, then

2

1
05aD5a + 0G0 = dTTQd?j = 7dy,
ij

and so
u2(dij) = (J?g + 7'2) d?j.

Thus, if O'% = 203 o= 72 then the uncertainty associated with the measure-
ment of any distance is exactly the same as for a CMM that has only a single
global scale effect with &?9 = U?g + 72. While the measurement of distance
has exactly the same behaviour, the measurement of other features could be
quite different. For example, a global scale effect will have little contribution
to the measurement of form error of a sphere while any squareness effect will
have a contribution.

Limitations of MPE statements in characterising CMM uncer-
tainty

The example above also shows that it is not possible to characterise the
uncertainty contribution of CMM measurement purely on the basis of an
MPE statement.

Uncertainty associated with the difference in two differences

If dij = [|j — ;]| and d,s = ||zs — @], then

W (dij — dys) = 0&(dij — drs)® + 0%, D%, + 05D,

2 2 2 2 2 2
T R N 0 B
Sia dij drs dij drs dij d'rs

and D% =

2 2 2
(xijyij . xrsQrs) 4 (mijzij _ xrszrs> + <yij2'ij . yrszrs>
dij drs dij drs dij drs

where
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For example is 1 and @2 and x3 and x4 are the end points of diameters
with dio = d3q4 = d and x2 — x; is parallel to the z-axis and x4 — x3 parallel
to the y-axis, then

u?(dig — dsa) = 2d°0%,,.

By contrast, if the four points are rotated by 45° then
U2(d12 — d34) = Uéd;

If Lo — L1 is parallel to r4 — I3 and d12 = d34 = d, then u2(d12 — d34) = 0,
showing that scale and squares effects make no significant contribution to the
uncertainty in calibrating a test length standard against a reference length
standard of nominally the same length if the two standards are aligned
parallel to each other.

[.4.4 Distance measurement: uncertainty contribution from
spatially correlated location effects

See section 1.3.7. Suppose that
* *
T, =x; + e, a:j:wj—i-ej,

where e; and e; are correlated effects. Suppose the x-components of the
correlated effects are such that

€ixs Cjx ™~ N(Oa U?:)’

and the the coefficient of correlation for these two effects is p;;, and that
the y- and z-components are similarly distributed. Assume that the z-, y-
and z-components are mutually independent then

2 2 2

u?(dij) = 7 (23;02(1 = pija) + Y500 (1 = pijy) + 25502 (1 = pij2)) -
ij

(Here x;; = xj — x;, etc., as before.) If the correlation is described in terms

2 2

of a correlation kernel as in (I1.20), then p;;, = e . If the correlation

behaviour is the same in each axis with o, = 0, = 0, = opr and p;;, =
—d2. /)2
Pijy = pijz = pij = € /BT then

u2(d,-j) = 2012[_,771 (1 — eid?j/)\%ﬂj .
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Let r = dz’j/)\ET- Then

4 6
1—€_d12j/>‘%T:1—{1—7“2+;!_g!"i""}a

, ot

=7r — 5 + § -
If Agr is much greater than d;; then e is close to 1 and the uncertainty is
the distance is close to zero. For this case the effects e; ~ e; act like a fixed
offset associated with the measurements (similar to a probe qualification
effect) and do not contribute the uncertainty associated with the distance.
For d;; somewhat less than Agr, the term on the right above is dominated

by the first term 72 so that

2

2 2 Lj

u(dij) = 205y )\274

ET
In this case, the uncertainty associated with d;; is approximately propor-
tional to d;; showing that the correlated effects behave somewhat like a scale

effect. If d;; is much greater then Ag7 the e_dlzj et 0 and

u2(dw) ~ QU%T.

For this case the correlated effects behave more like independent random
effects. Figures I.1-1.4 also give insight into the dependence of uncertainties
associated with distances on spatial correlation length.

Uncertainty associated with the difference in two distances

This section shows how the uncertainty u(di2 — ds4) in the difference in two
distances associated with four points x1.4 can be evaluated for an isotropic
spatial correlation model defined by statistical parameters cgr and length
scale parameter Agr. Let mi2 be the unit normal point in the direction
xo — x1 and ngy defined similarly. Then

UQ(dIQ - d34) = U]Q_J/‘TgTngv g = (17 _17 _17 1)T7

with
1 e_d%2/)‘§5T Ce_d%?,/)‘%T ce_d%4/>‘2ET
e*dfz/)‘%T 1 c@*dg3/>‘2ET Ce*d%4/)\2ET
VN = ce*d%:a/)‘%T ce*d%gz/)‘%T 1 e*dgzx/)‘%T ’
ce_d%4/)‘2ET Ce_d§4/)‘2ET e_d§4/>‘2ET 1
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where ¢ = n{,n34, the cosine of the angle between the two normal vectors.
Performing the matrix-vector multiplications, we end up with

u?(diz — dzg) = 20%7 (2 — e12 — e34 + c(eaz + €14 — €13 — €24))

32 2
where ejo = e d12/)‘ET, etc.

Example: comparison of two gauge blocks. Suppose two gauge blocks
of nominally the sample length are measured side by side, parallel to each
other. For this case dis =~ d34 = D, say, di3 =~ dagq = d, say, and nis ~ n3y
so that ¢ ~ 1. If d is much smaller that D, then di4 = dog =~ di2, and

u?(dig — dsg) ~ 4057 (1 _ e_dz/A%ET) _

This uncertainty can be thought of as a quantification of the Abbe contribu-
tion to the uncertainty due to the fact that the measuring lines associated
with the two gauge blocks are displaced by d from each other.

[.4.5 Distance measurement: uncertainty contribution from
spatially correlated rotation effects

See section 1.3.7. We assume the spatial correlation is isotropic specified
by variance 0’% r and length scale parameter Aggr. If x; is measured using
probe offset p;,, k = 1,2, nj is the unit vector pointing from x; to x2, and
Gy, are the sensitivity matrices associated with R(a)p, with respect to «
evaluated at o = 0 as in (1.23), then the uncertainty u(d;2) in the distance
d12 due to rotation effects is given by

92 2
“2(d12) = UQER <m1Tm1 + m;mQ — 2(m1Tm2)e d12/>‘ER> ,

where my = Ggnia, k = 1,2. If the same probe is used for both measure-
ments, then p; = p, = p, say, m; = mo = m, say, and

u2(d12) = 20]25Rm—rm (1 — e_d%Q/)‘2ER) )

For this latter case, the quantity m "m depends on the relationship between
n12 and p. If p is in same direction as mis (unlikely to be so in practice)
m = 0. If p is orthogonal to mj2 (as is often the case) then m'm =p'p,
so for the case of the measurement of a distance using the same probe,

u(dia) < V20 5R|p| (1 _ e—d%Q/A%R) .
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More generally,
u(di2) < V20grP (1 - efd%Q/’\%R) < V20gRP,

where P is the length of the longest probe involved.

[.4.6 Distance measurement: uncertainty contribution from
spatially correlated probing effects (P)

See section 1.3.8. We assume the spatial correlation is isotropic and specified
by variance 0123 and length scale parameter Ap. The spatial correlation
parameter Ap relates to chordal distance on the unit sphere and is usually
chosen so that two points that are diametrically opposed on the unit sphere
are associated with independent effects, i.e., Ap is significantly smaller than
1. In general, a value of Ap = 1/2 is appropriate. Suppose xj, is measured
in probing direction mj using probe offset p, with associated statistical
parameters op, i, opr and Apy, k = 1,2, and ni2 is the unit vector pointing
from @ to xs. For the case of different probes, the model in section 1.3.8
assumes that the probing effects are independent so that

2 _ 2 2 2 2

u (dlg) = 0'p071 + UPO,Q + O'p71 + Up72.
For p; = py = p, etc.,

2 2,92, 2
u”(d12) = op, (07 + 05 — 20109)
) 2
+0op (O% + 03 — 20109€ dp’w//\P) ,

where

T T

01 =M N2, 02 =nyni2, dpiz=|ns—mnl.

It is usually the case that m; and meo are aligned with ni9. In this case,
01,09 = £1, and we have

u2(d12) = 40’1230 + 20’123, n|; = —no, u2(d12) =0, m|=no. (129)

The relationships above in (1.29) shows how the model accounts for the dif-
ferences between uni-directional and bi-directional probing. For example, in
measuring a step gauge, the probing effects do not contribute to the uncer-
tainties associated with the distances between left-facing faces or between
right-faces faces but contribute to the uncertainties in distances between
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left- and right-facing faces. In the comparison of two gauge blocks sitting
side by side in which all four faces (two left-, two right-facing), are measured
with the same probe, then the uncertainty contributions are such that

UQ(dlg) = u2(d34) = 40%30 + 20%3, uz(dlg — d34) =0.

1.4.7 Uncertainties associated with distances due to com-
bined effects

In the sections above, we have considered the uncertainty contributions to
distances due to a number of effects. In this section we summarise these
results, giving typical uncertainty contributions in terms of a small number
of statistical parameters.

Random effects (R). Statistical parameter op.
u%%(dw) = 20’12_3.
Probe qualification effects (PQ). Statistical parameters opg repre-

senting the maximum probe qualification uncertainty. For distance mea-
surements using the same probe, the contribution is zero. Otherwise

2 2
Scale and squareness effects (S). Statistical parameters og, 0g, and
0g. For this model, the uncertainty in distance is approximated by
2 (2 2 2\ 12
ug(dij) = (05 + 05,4 +03) di.
If the measurements are aligned with an axis the squareness component,

represented by o¢, makes no contribution.

Spatially-correlated location effects (ET). Statistical parameters ogr
and Ag7p.

upr(dij) = 205y (1 - efd?j/A%T) < 20%7.
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Spatially-correlated rotation effects (ER). Statistical parameters ogpg,
Argr and the maximum probe length P.

ubp(dij) < 2055 P° (1 - e_d?j/A%R) < 2035 P

Spatially-correlated probing effects (P). Statistical parameters op,,
op, and Ap:
u%p(dz]) < 40%30 + 20%3.

1.4.8 Plausible values for statistical parameters based on an
MPE statement

Suppose the MPE statement is |d — d*| < A + d*/B. We can interpret this
statement statistically as

Ku*(d) < A+d/B

where K is, say, 2 or 3. From the summary information given in section 1.4.7
above, for d;; ~ 0, the uncertainty u(d;;) is such that

u?(dij) <2 (0122 + UIQDQ + 0% + 20%0) .
This implies
och=2(ch+ UIQDQ + 0%+ 201230) < A%/K*? (1.30)

which puts constraints on the size of 0 4, as defined above, and depending on
the statistical parameters o, opg, op, and op. With o4 defined as above,
we can set

u2(d) = O’i + (a% + U?g’a + O'é) d? +
22, (1 - e—d2/*fw> + 202, P? (1 - e_dZ/’\%ER> , (L31)
a summary estimate of the uncertainty in distance due to the combined
effects, and evaluate

_ Ku(d)
=G ryp

If C(d) < 1 over the working volume, then the values of the statistical
parameters do not violate the MPE statement. If Cpax = maxg<r,,.. C(d) is

(1.32)

max
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Table 1.3: Statistical parameters for calculating u(d).
Effect | Parameter Unit ‘ Value

MPE A mm 0.002

B 1 1.25e5

Repeatability OR mm | 0.000 2
Scale, squareness g 1] 4.0e—6
05, 1] 2.0e—6

o0Q 1]2.0e—6

Probe qualification opQ mm | 0.000 5
Location OET mm | 0.000 5

AET mm 100.0

Rotation ogr | radians | 1.0e — 5

/\ER mim 200.0

P mm 40.0

Probing op, mm | 0.000 2

op mm | 0.000 2

Ap 1 0.5

maximum value of C'(d) over the working volume, then the simple procedure
of dividing all the statistical parameters representing standard deviations,
OR, €tc., by Chax will lead to conformance with the MPE statement.

Graphs of the MPE and uncertainty of distance components as a function of
d derived for statistical parameters in table 1.3 and expansion factor K = 2
are shown in figure I.5. The figure shows that the statistical parameters
conform to the MPE statement. The uncertainty contribution from scale
and squareness effects is linear in d while the spatially-correlated location
and rotation effects start off as linear in d but begin to level off for larger
values of d. The spatially correlation length scale parameter Aggr associated
with the rotation effects is larger than that Agp for the location effects and
the levelling off occurs later for the rotation effects. For d < 200 mm, the
rotation effects look like a scale effect. Figures 1.6 and 1.7 graph the same
functions but for the case Agp = 50 mm and Agr = 100 mm (shorter length
scale, less smooth behaviour) and Agr = 200 mm and Aggp = 400 mm,
(longer length scale, smoother behaviour), respectively. The shorter length
scales correspond to behaviour more similar to independent random effects
(apart from over short distances) while the longer length scales correspond
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to behaviour more similar to scale and squareness effects.

%107

0 50 100 150 200 250 300 350 400 450 500
d/mm

Figure 1.5: Graphs of the MPE and uncertainty of distance components as a
function of d. The upper solid line is A 4+ d/B, the lower solid line is Ku(d)
with u(d) evaluated as in (1.31) and uncertainty contributions Kug(d) from
scale and squareness effects, dotted line, Kugp(d) from spatially correlated
location effects, dashed line, and Kugpr(d) from spatially correlated rotation
effects, dot-dashed line, derived for statistical parameters in table 1.3 and
expansion factor K = 2.

Plausible values for spatial correlation location effects

The MPE statement can used to constrain a subset of the statistical param-
eters. In this section we consider random effects and spatially correlated
location effects.

Suppose a CMM is modelled in terms of
x;=x; +e +e, €cN(0%),

where e; are isotropic spatially correlated effects with associated variance
O‘%T and length scale parameter A\gp. The uncertainty u(d) associated with
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%107

0 50 100 150 200 250 300 350 400 450 500
d/mm

Figure 1.6: As figure 1.5, but for Ag7 = 50 mm and Agr = 100 mm cor-
responding to shorter length scales and less smooth behaviour of the error
functions.

a distance measurement in this model is given by
UQ(d) = 20’% + 202ET (1 — e_dg//\2ET) .
If the MPE statement is |d — d*| < A 4+ d*/B, then we can interpret the
MPE statement statistically as
_d2/)2 1 9
w?(d) = 202 + 20%,; (1 _ed /AET) < — (A+d/BY, (L.33)

where K is such that the chances of measuring a distance that fails the
MPE test is small, say K = 2 or K = 3, correspond to a chance of 5 % or
0.27 %, respectively (assuming Gaussian distributions). The inequality in
(I.33) constrains the possible choices for og, opr and Agp. In particular,
for d;; < Agr and d;; < B, we have

20% < A% /K2
We can rewrite the inequality in (1.33) as

R(dlog,opr, \eT) < 1, (I.34)
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0 50 100 150 200 250 300 350 400 450 500

0

d/mm

Figure 1.7: As figure 1.5, but for Agr = 200 mm and Agr = 400 mm
corresponding to longer length scales and smoother behaviour of the error
functions.

where
203+ 203, (1 - e=@/kr)
(A+d/B)?

R(d|og,opT, \gT) = K*

As a function of d, R(d|o g, o, A7) is unimodal taking the value of 2K<712;,//A2
at d = 0 and decaying like 1/d? as d —> 0o. If Ly is the longest distance
in the working volume, then if R(Lmay) > 0, where R is the derivative of R
with respect to d, it follows that R(d) <1 for 0 < d < Lyax. If R(Lmax) <1
but R(Lmayx) < 0, then R(d) has its maximum inside the interval [0, Lpay].
As d increases from 0, the numerator in R(d) increases until the point where
e~%/Xbr becomes small. From then the numerator is constant and the be-
haviour of R(d) follows a 1/d? decay. Let dy be such that e=%/ er = 0.1,
ie.,

do = +/(—10g(0.1))\gr,

an approximation to the point where R(d) takes its maximum. If Ry =
R(dp|lor,orpT, \gT) < 1, then it is likely that the constraint on R < 1 is
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valid for all d < dy. If Ry > 1, then reducing ogr to

1 [(A+dy/B)?
oM = T (+K02/) —20%|, do=+/log(10) gz, (1.35)

will likely reduce R(d) to be less than 1 over the range 0 < d < dy. These cal-
culations give a useful approximate value for o g so that R(d|og, opr, Apr) <
1, given estimates of or and Ag7.

Figure 1.8 shows the graphs of the functions R(d|og, o, Agr) and R(d|ogr, 6, AET)
defined in (1.34) for App = 20 mm, 50 mm and 100 mm. Each graph gives
the function determined using the prior value of ogr = 0.001 mm, and the
function determined using the adjusted value of s calculated as in (I1.35).
The adjusted values are 63y = 0.000 6 mm, 0.000 7 mm, and 0.000 9 mm,
for the three values of Agpr. For each of the three cases, it is seen that the
estimate dj is reasonably close to where R(d) is maximised, and that the
adjusted function satisfies R(d|or, s, Agr) < 1 to a good approximation.
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2F —— T T T T T T T 3
Prior
— Adjusted
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Figure 1.8: Graphs of the functions R(d|ogr, ogr, Agr) and R(d|oR, o, AET)
defined in (I.34) for Agr = 20 mm (top), Agr = 50 mm (middle) and
Apr = 100 mm (bottom). Each graph gives the function determined using

the prior value of o7, and the function determined using the adjusted value
of 6 calculated as in (1.35).
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I.5 Least squares (Gaussian) associated features

In this section we look at methods that derive features through fitting model
to data by minimising a sum of squares objective function. Many of the
calculations involve the distance to an axes or a plane and we consider those
first.

I.5.1 Calculations associated with axes
Point on an axis

If zg = ®a+tava, is a point on the axis, then the sensitivity matrix Gz
of z 4 with respect to by = (:cj;,'vA is the 3 x 6 matrix

X
100 ta 0 0
GzaBa=]0 10 0 tq 0

001 0 0 ty

Distance from a point to an axis

For an axis specified by x4 and va = (ua,va,wa)’ with |Jva| = 1, the
distance from a point x to the axis is given by

da(®,ba) = [[(x —xa) xvall, (1.36)
with
13 (y —ya)wa — (2 — za)va
(x—xzp)Xva=|n|=| (2—24)ua—(x —x4)wa
¢ (z —xa)va — (¥ — ya)ua

The 1 x 6 sensitivity matrix Gp,|p, of da = da(x,b) with respect to by =
(z},v])) is given by

nwa — Cua
Cua —&wa
1 _
GLip =+ §va = ua . (1.37)

da | n(z—za) = C(y —ya)
C(x —za) = &(2 — 2a)
| &y —ya) —n(z —z4) |
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Distance from a point to a plane orthogonal to an axis
The distance dp(x,bs) from a point = to the plane (x — x4) va = 0
specified by x4 and v = (uq,va,wa)" with ||va| = 1, is given by

dp(z,ba) = (& —x4) V4. (1.38)

The 1 x 6 sensitivity matrix Gp,|p, of dp = dp(x,b) with respect to b’ =
(z},v)) is given by
—ua
—wa
Ghopa = | _w;‘A : (1.39)
Yy—ya
| z—2z4 |

Intersection of axes with a fixed plane

Suppose b = (:EX, 'vl)T, with vaA = 1, specifying an axis £ has associated
6 x 6 variance matrix Vp and that a fixed plane P is specified by locating
point & p, with axis unit normal vp, with UITJU p = 1. The point intersection
xy, of the £ with P is given by

-
(xp—x4) vp
T =TA+tvg, t=-——.

The 3 x 6 sensitivity matrix G p of &y, with respect to b is given by

T

Gus =[G tG], G=T1--222 (L.40)

If b; and by specify two axes £1 and Lo that intersect the plane P, then the
1 x 12 sensitivity matrix associated with the distance di2 between the two
points of intersection with respect to [b] by | is given by

Ganp = |n1aG1, tin,G1, —n{yGa, —tan],Gal
where n12 = (xr 2 — 1 1)/d12, the unit normal vector pointing from x, ;
to 12, t1 and to define the points of intersection, and G and Go are the

3 x 3 sensitivity matrices calculated as in (1.40). If v41 R va2 & vp asin
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the case where both axes are approximately orthogonal to the plane, then
niyva1 =~ 0, etc., and

~ |nT T T T
Gd127B ~ [n127 t1n127 - n12? - t2n12 .

For this latter case, let mi2 = mni2 X vp, the unit vector orthogonal to
both 12 and vp. Then (va2 — 'vAJ)Tnlg is approximately the angle a, of
rotation between v 41 and v4 2 about the axis m2 and (va2 — vA,l)Tmm
is approximately the angle rotation «, between v4; and vao about the
axis m1a. The 1 x 12 sensitivity matrices associated with «,, and «,, are
approximated by

~ T T
Gam,B ~ |:07 —MNnq9, 07 le} )

~ T T
Gan,B ~ |:0, —m12, 0, m12i| .

These sensitivity matrices are useful in evaluating the uncertainty associ-
ated with the angles between two nominally parallel axes, and similar cal-
culations.

I.5.2 Least squares (LS) feature assessment

Suppose u +— s(u, a) defines a parametric curve or surface. The parameters
u determine the position of a point on the surface and the parameters a
determine the shape and position of the surface. We assume that set of
measured coordinates, 1., nominally represent points on such a surface, so
that

x; ~ s(u;,a), (1.41)

for some u; and some a. The least squares (LS) estimates 1., and a of
u1.,, and a, respectively, can be found by minimising

m

ZdQ(aci,a), d(zi, a) = (x; — s(ul,a)) n;, (1.42)
i=1

where u} specifies the point s' = s(u}, a) on the surface closest to ; and
n; is the normal vector at s;. The term least squares orthogonal distance
regression (LSODR) is also used for this type of optimisation problem [6, 27]
as d(x;,a) is the (signed) distance of x; from the surface s(u, a) measured
orthogonally to the surface. For standard geometric elements, d(x,a) can
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be evaluated analytically [13, 14]. For more general surfaces, numerical
methods are required [21]. Let J = J(x1.m,a) be the Jacobian matrix

defined by
od

Jij = 7(.’13,‘, a).

Oa;
The optimality conditions for @ to minimise the sum of squares in (1.42) are

of the form
J'd=0, J=J(®im,a), d=d(z;a).

These optimality conditions implicitly define the solution a as function of
the data points 1., and allow us to evaluate the sensitivity matrix G 4 x of
a with respect to the data [1, section 4.2.4]. If J is the Jacobian matrix and
n; are the corresponding surface normals at the solution 1., and a then

Gax=GapN', Gup=-("T0)""J", (1.43)

where N is the 3m x m block diagonal matrix storing the normal vectors
n; in the 3 x 1 diagonal blocks. The matrix n X m G |p is the sensitivity
matrix of the parameters a with respect to changes in @; in the direction of
n;, i.e, with respect to nl-Ta:i, 1=1,...,m.

If J has QR factorisation [26]

1-qr-@ Q| | (L41)

where @ is orthogonal and R is upper-triangular, then
Gap =—R{'Q1.

If Vx is the variance matrix associated with @x1.,,, then the variance matrix
associated with the features a is given by

Vy = GA‘XVXGLX.
If Vx is the diagonal matrix 21, then
Va=0o2(J" )t =0%(R{ R, (1.45)

using the fact that NTN = I. If the systematic effects e;.,, are defined in
terms of parameters b with associated variance matrix Vg, then the variance
contribution Vyp to the variance Vy arising form the effects is given by

Vag = GA\BVBGLBa GaB = GAxGxB-
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Uncertainties associated with residual distances

It is also possible to propagate the uncertainties associated with ., through
to the residual distances d where d; = d(x;,a) evaluated at the solution.
Taking into account the fact that the solution a is implicitly defined as a

function of x1.,,, the sensitivity matrix GG bIx of d with respect to x1.,, is

given by
G = (1= I T)NT,
= (I+JGap) N, (1.46)
= (1- @@ ) NT = Q@I N,

where Q1 and Q)2 are the submatrices of the orthogonal factor @ as in (1.44).
We also write
Gpp=1+JGap=1- Q:1Q] (1.47)

to denote the sensitivity of the residual distances d(x;,a) with respect to
changes in x; in the direction n;, i.e., with respect to n;—azl

We can also evaluate the sensitivity matrix Ggx of the component of the
surface points s(u’, a) orthogonal to the surface with respect to @j.p,:

Gox =J(JTI)PITNT = —JG yx. (1.48)
The sensitivity matrix
Ggp =—J(JTJ)'J" = —JG 4 p, (1.49)

is the sensitivity matrix of the component of the surface points s(u,a)
orthogonal to the surface with respect to n;—mi, i=1,...,m.

The sensitivity matrices above, G4 x, Gpx and Ggx can all be stored
compactly and constructed from the m x n matrix J, the n x m matrix
(JTJ)~1JT and the normal vectors 1m1.y,.

Weighted least squares orthogonal distance regression

It is sometimes useful to incorporate weights w; > 0 into the orthogonal
distance regression scheme so that the counterpart of (1.42) is

> wid(zi,a), d(zi,a) = (z; - s(uf,a)) n; (1.50)
=1
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Let W be the diagonal matrix with w? in the ith diagonal element. Then
the counterpart of (1.43) is

Gaxw=—(J W) LITWNT, (1.51)

with Gpx and Ggx calculated as in (1.46) and (1.48) but with G4 xw
replacing G 4 x. Similarly,

Gapw =—(J W) LITW, (1.52)

is the sensitivity matrix of weighted least-squares fitted parameters a with
respect to n.' @;, and can be used to calculate G/j|D and Gg|p as in (1.47)

and (1.49).
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I1.5.3 Sensitivity matrix associated with a least-squares circle
fit to data in a plane

If a circle is parametrized by a = (g, yo,70) " specifying its centre xo and
radius 79, the signed distance d(x;,a) from a data point @; to the sphere
given by a is

d(xz;,a) =r; — o,

where

7”1-2 = (x; — CUO)T(fBi —xg) = (5 — $0)2 + (yi — yo)2-

The ith row Jacobian matrix J of partial derivatives of d(x;, a) with respect
to a' is given by

. 1
J(i,:) = —;[:Ez' — 0, Yi — Y0, i) = —[n}, 1], m;= (@ — @0) /1y
(2
The optimality conditions J'd = 0 can be written as

m

1
Z(Tz’ —ro)n; =0, r19=—r,
m

=1

showing that at the solution, the radius of the best fit circle is the average
of all the distances of the points to the centre. The 3 x 3 matrix H = J'.J

is given by .
2m; m

The sensitivity matrix G4 x = H “1JTNT and

T T T
nin naon e MyypN
ﬂNT:_[ng 2 Z#ﬁ. (1.53)
1 2 m

showing that perturbing @; by Ax; causes x( to be perturbed by an amount
that depends on extend to which Ax; is aligned with the normal n;.

For points x; approximately uniformly distributed around the circle, H is
approximately diagonal with

1/2 0 0 L [2 00
Hx~m| 0 1/2 0|, H'~—|0 2 0 (L.54)
0 0 1 1o o0 1
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Thus if Vx = o1 then, from (1.45), V4 = 0% H !, showing that the vari-
ances associated with a vary with 1/m and that the variance associated with
x( is twice that associated with rq, for a uniform distribution of points. We
can argue that every data point contributes to estimating the radius but on
average only half of the data points contribute to estimating each coordi-
nate of the circle centre. This behaviour is made clear by looking at the
sensitivity matrix G 4x-

Analytical approximations for (an arc of) a circle

The calculation of H in (I1.54) is for the case of points uniformly distributed
around a complete circle. Similar but more complicated calculations can be
made for a partial circle and the common and often problematic case of a
small arc of a circle.
For points (z;,y;)" = r0(cos#;,sin®;)" on a circle, the corresponding con-
tribution to the Jacobian matrix is the row (— cos6;, —sin6;, —1) and the
matrix H = J'J is given by

>, cos? b >, cosbisinb; Y. cosb;
H=| Y ,cost;sinf; > ,sin’6; > sinb;
> cosb; >, sinb; m

The principle of Monte Carlo integration states that for a function f(6)
defined over a region A the integral of the function over the region can be
approximated according to

|i”/Af(e)da ~ %Zf(ei), (1.55)
i=1

where 61.,, is a sample of points uniformly distributed over the region A
and |A| is the area/volume of the region. We can use this approximation in
the other direction to approximate H derived from a discrete set of points
from analytically derived integrals. For example, suppose points xi.,, are
approximately uniformly distributed of the arc of the circle defined by —a <
0; < «. Then

i m ¢ 1  sin2a
Zcoszei%/ cos29d9:m<+ );
P 20 J_, 2 da
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see Appendix .3. Continuing in this way, let

1/2 + (sin 2a) /4 0 (sina)/a
H, = 0 1/2 — (sin2a) /4« 0 , (1.56)
(sina)/«a 0 1

and V,, = H;! given by

1 1 0 —(sina)/a
Vo = Do 0 D13/(1/2 — (sin2a) /4a) 0 ,
131 —(sina)/a 0 (1/2 + (sin 2a) /4av)
where

D13 = 1/2 + (sin2a)/4a — ((sina)/a)?,

the determinant of the 2 x 2 submatrix of H, constructed from its first and
third rows and columns. Then

1
JT Nt e —V,.
m

If the variance matrix associated xj,, can be approximated by 0]2%.7 , then
the variance matrix V4 associated with the fitted circle parameters is ap-

proximated by
2

g

~ %R
Varm Vo,

m

and the standard uncertainties associated with a are given by or/v;;/m,
where vj; is the jth diagonal element of V,,. The quantities s(a;) = ,/v;; for
selected values of a are given in table 1.4. For a less than 107/180, i.e., less
than 10 degrees, then D3 is approximated by a?/45 and the diagonal ele-
ments of V,, are approximated by 45/a%, 3/a? and 45(1 —a?/3)/a?; see also
table I.4. The uncertainty associated with the y-coordinate of the circle cen-
tre scales with 1/« while the uncertainties associated with the z-coordinate
and radius scale with 1/a2, for small . The estimate of the x-coordinate
of circle centre is almost perfectly negatively correlated with the estimate of
the radius.
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Table 1.4: Square roots s(a) of the diagonal elements of V,,. For points
1., approximately uniformly distributed on the arc of the circle defined
by —a < 6; < a and for point cloud variance matrix O'%I , the uncertainties

u(a) = ors(a)/v/m.

20r/deg s(zo) s(¥o) s(ro)
360 1.41 1.41 1.00
270 1.81 1.28 1.14
180 3.25 1.41 2.30
160 3.96 1.51 2.97
140 5.00 1.65 3.98
120 6.62 1.85 5.56
100 9.30 2.14 8.23
80 14.25 2.61 13.16
60 24.95 3.40 23.85
40 55.54 5.02 54.42
20 220.70 9.95 219.58

a <5 deg
a/rad | ~+V/45/a® | ~V3/a | = /45/a?
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I[.5.4 Sensitivity matrix associated with a least-squares sphere
fit to data

If a sphere is parametrized by a = (z0, 0, 20,70) | specifying its centre g
and radius rg, the signed distance d(x;, a) from a data point x; to the sphere
given by a is

d(wiv a’) =T —To,

where

ri = (@i — @) (¢ — @) = (21 — 20)* + (yi — v0)* + (2 — 20)*.

The ith row Jacobian matrix J of partial derivatives of d(x;, @) with respect
to a' is given by

, 1
J(i,:) = ——[2i — 0, ¥i — Yo, 2 — 20, Ti| = —[n; , 1],

n; = (x; —xo)/ri
Ti

The optimality conditions J'd = 0 can be written as

m
1

E (ri —ro)n; =0, 19 = —1,
m

=1

showing that at the solution, the radius of the best fit sphere is the average
of all the distances of the points to the centre. The 4 x 4 matrix H = J ' J
is given by

For points «; approximately uniformly distributed around the sphere, H is
approximately diagonal with

13 0 0 0 3000
N 0 1/3 0 0 L _1]03 00
Hrem) g o s ol nloo 3o
0 0 0 1 0001

Thus if Vx = 012%] then, from (1.45), V4 = U%H_l, showing that the vari-
ances associated with a vary with 1/m and that the variance associated with
x( three times that associated with rg, for a uniform distribution of points
around the complete sphere.
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The sensitivity matrix G4 x = H7'JTNT and

T T T
JINT — _ | MMy many o Mmny, (L57)
- nT nT e nT : :
1 2 m

showing that perturbing x; by Ax; causes xq to be perturbed by an amount
that depends on extend to which Ax; is aligned with the normal n;.

Analytical approximations for a patch of a sphere

We can use the principle of Monte Carlo integration (1.55) to determine
analytical approximations for matrices used to construct the sensitivity ma-
trices. In polar coordinates with (z,y, z) = (cos  cos ¢, sin 6 cos ¢, sin ¢), for
points approximately uniformly distributed on the sphere on the patch de-
termined by 7 < a3 < 0 < ay < 7mand —7/2 < B < ¢ < By < 7/2 we
have
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where H,4 is the symmetric matrix with

az B2
Hy(1,1) = / cos? 0d6 cos® ¢dg,
a1 B1
Qs B2
Ha(1,2) = / sin 0 cos 6d6 cos® pde
al B1

az B2
Hx(1,3) = / cos 0dé sin ¢ cos? ¢pdg,
lo%1 B1
a2 B2
Hy(1,4) = / cos 6d6 cos? ¢do,
a1 B1

Qs B2
H,(2,2) = / sin? 0d6 cos® pd o,
aq b1

a2

B2
Ha(2,3) = / sin 6d0 / sin ¢ cos? ¢do,
al 1

az B2
Hy(2,4) = / sin 0d6 cos? ¢pd o,

o1 B1

B2

Ha(3:3) = (a2 ar) [ sin? gcos oo,
5

Ha(3.4) = (a2 1) [ singcos oo,

B2
Hs(4,4) = (ag — 041)/ cos ¢pd¢.

These integrals can be evaluated according to the formulaein Appendix .3.
The elements of H 4 take into account the change of variables from Cartesian
to spherical coordinates and involve an additional cos ¢ term.
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Cap of a sphere

We consider here the case —m < 0 < 7 and —7/2 < 1 < ¢ < w/2. For this
case, the nonzero elements of H, = ﬁH 4 are determined by

H,(1,1) = M@B — cosy — cos®y/3),
H,(2,2) = W(Z/B — cosy — cos®y/3),
H.(3,3) = 1_1057(1 ~ cos)/3,

H.(3,4) = 1;m(1 ~ cos2v) /4,

H,(4,4) =1,

where v = 7/2 — 3. The nonzero elements of V,, = H’ L are determined by

Vo(1,1) = 1/H, (1, 1),
V,(2,2) = 1/H,(2,2),

1
V'y(?), 3) = D734
1
Vry(?), 4) - _D734H’Y(37 4),
1
V'Y(4’ 4) - D734Hry(3, 3),

where
D3y = H,(3,3) — H2(3,4),

the determinant of the bottom right 2 x 2 submatrix of H,. If the point
cloud data is associated with variance matrix 012%.7 , then the variance matrix
V4 associated with the fitted sphere parameters a is approximated by

2

g
VA ~ fRV,),.
m

For  approaching zero, corresponding to measurements on a cap of a sphere,
D3y ~ ~7*/48, and

4/4* 0 0 0
_ 0 4/+? 0 0
S 48 /44 —48(1 — +*/4) /+* (158)

0 0 —48(1—7%/4)/y" 48(1—-+%/2)/y"
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Table 1.5: Square roots s(a) of the diagonal elements of V, in (I1.58). For
points @1.,, approximately uniformly distributed on the sphere with eleva-
tion angle satisfying 7/2 —~ < ¢; < 7/2 and for point cloud variance matrix
0%1, the uncertainties u(a) = ogs(a)/\/m.

v/deg | s(zo) | s(yo) $(20) s(ro)
180 | 1.73| 1.73 1.73 1.00
135 1.65| 1.65 2.03 1.04
90 | 1.73] 1.73 3.46 2.00

80| 183] 1.83 419 2.66

70| 1.97| 1.97 5.26 3.67

60 | 219 2.19 6.93 5.29

50 | 252 | 2.52 9.70 8.03

0| 304] 3.04 14.81 13.11

30 | 3.95| 3.95 25.86 24.15

20 | 582 | 582 57.44 55.72

10 | 11.50 | 11.50 228.02 226.29

7 <5 deg

v/rad | = 2/y | = 2/y | =~ V48/7* | = V/48/y°

The quantities s(a;) = /V;(J,j) for selected values of v are given in ta-
ble 1.5. The uncertainty associated with the x and y-coordinates of the
sphere centre scale with 1/ while the uncertainties associated with the z-
coordinate and radius scale with 1/42, for small . The estimate of the
z-coordinate of sphere centre is almost perfectly negatively correlated with
the estimate of the radius. These results are in line with results associated
with an arc of a circle discussed in section 1.5.3.

These calculations are also relevant to determining the radius of curvature
for other surfaces such as paraboloids and aspherics that have low curvature.

Equatorial band of a sphere

The calculations in section 1.5.4 can be used to estimate sensitivities asso-
ciated with measurements distributed along an equatorial band of a sphere
defined by —7 < 6 < 7w and —f < ¢ < f < /2. These calculations are
also relevant to measurements using ball bar or machine checking gauge that
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Table 1.6: Square roots s(a) of the diagonal elements of V3 in (I1.59). For
points ., approximately uniformly distributed on a equatorial band of
the sphere with elevation angle satisfying — < ¢; < 8 < 7/2 and for point
cloud variance matrix 0%/, the uncertainties u(a) = ogs(a)/v/m.

B/deg | s(zo) | s(yo) s(z0) | s(ro)
90 1.73 1.73 1.73 | 1.00
80 1.72 1.72 1.76 | 1.00
70 1.68 1.68 1.84 | 1.00
60 1.63 1.63 2.00 | 1.00
50 1.58 1.58 2.26 | 1.00
40 1.52 1.52 2.69 | 1.00
30 1.48 1.48 3.46 | 1.00
20 1.44 1.44 5.06 | 1.00
10 1.42 1.42 9.97 | 1.00
B <5 deg
B/rad | ~v2 | =2 | =~ 3/83 1

rotates about a fixed point and defines points on a virtual sphere. The area
over which the integration is performed is |A| = 4msin . For points ap-
proximately uniformly distributed in an equatorial band, if the point cloud
data is associated with variance matrix 0’%[ , then the variance matrix Vy
associated with the fitted sphere parameters a is approximated by

2

~ %R
Vi = - Vs
where
2/(1 — sin? B3/3) 0 0 0
B 0 2/(1 — sin? 3/3) 0 0
Vs = 0 0 3/sin23 0 (1.59)
0 0 0 1

Points on a longitudinal segment of a sphere

The calculations in section 1.5.4 can be used to estimate sensitivities asso-
ciated with measurements distributed in a longitudinal segment of a sphere
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defined by —7 < —a < 0 < a < 7 and —7/2 < ¢ < 7/2 ( the curved
surface of a segment of an orange). These calculations are also relevant to
measurements using ball bar or machine checking gauge that rotates about
a fixed point and defines points on a virtual sphere. The area over which the
integration is performed is |A| = 4a. For points approximately uniformly
distributed over the segment, if the point cloud data is associated with vari-
ance matrix 012_2[ , then the variance matrix Vj associated with the fitted
sphere parameters a is approximated by

Vi~ 2BV, (1.60)

Va(1,1) = 1/D1y,

Va(1,4) = —msina/(4aD14),
Va(2,2) = 3a/(a — (sin2a)/2),
Va(3,3)
Va(4,4)

3a/(Dyga(a + (sin 2ar) /2)),

with

a+ (sin2ar) /2 rsina?
Dia= B da

the determinant of the 2 x 2 submatrix of H, = V! comprising of rows
and columns 1 and 4. For a near zero, D4 ~ 2/3 — (7/4)? ~ 0.05,

20 0 0 —5m
N 0 9/(22%) 0 0
Vam | 0 50 (1.61)

5 0 0 40/3

The quantities s(aj) = \/Va(j,j) for selected values of o are given in ta-
ble 1.5.4. The uncertainty associated with the y-coordinate of the sphere
centre scales with 1/cv, while all other parameters remain well defined. These
calculations depend on measuring over the complete segment, including the
two poles. Corresponding calculations for measurements reduced to an equa-
torial band of the segment can be made using the results in section 1.5.4.
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Table 1.7: Square roots s(a) of the diagonal elements of V,, in (1.60). For
points @1.,, approximately uniformly distributed on a segment of the sphere
with —a < 6; < a < 7 and for point cloud variance matrix 012%[ , the
uncertainties u(a) = ors(a)/\/m.

2a/deg | s(wo) | s() | () | s0r0)
360 1.73 1.73 1.73 1.00
270 2.20 1.57 1.73 1.13
180 3.46 1.73 1.73 2.00
160 3.85 1.85 1.73 2.36
140 4.22 2.02 1.73 2.74
120 4.50 2.26 1.73 3.09
100 4.66 2.62 1.73 3.36
80 4.69 3.19 1.73 3.53
60 4.64 4.16 1.73 3.62
40 4.56 6.15 1.73 3.65
20 4.50 12.19 1.73 3.66

a <5 deg
a/rad | ~ /20 | ~V45/a | ~/3 z\/40/3
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Procedure for evaluating a sphere feature sensitivity matrix

The approach described in section 1.5.2 allow us to evaluate the sensitivity
matrix associated with a weighted least-squares sphere fit to data.

Inputs

1. Sphere centre xy and radius rg.

2. Point coordinates coordinates x1.,, for points lying on or close to the
sphere surface specified by a = (31:(—)r ,T0)-

3. Weights w1.p,, w; > 0.

Outputs

1. 4 x m sensitivity matrix G4 p of a with respect to changes in 1.,
normal to the sphere surface where a is determined from a weighted
least-squares fit to the data.

2. Point coordinates x7.,, of footpoints, i.e., ] is the point on the sphere
surface specified by a closest to x;.

3. Outward pointing unit normal vectors ny.,, corresponding to x7.,,.

4. m x 4 Jacobian matrix associated with an unweighted least-squares fit
and parameters a.

Procedure
1. For each i =1,...,m, set r, = &; — xg, n; = (x; — xo)/r; and x; =
Tromn;.
2. Assign the m x 4 Jacobian matrix J: for each i =1,...,m, set J(i,1:
4) = [-n/,—1] to
3. Form weighted Jacobian matrix Jyy: foreach: =1,...,m, set Jy (3,1 :

4) = w?J(i,1:4).

4. Form sensitivity matrix G4 p = — (JTJW)_1 Ty
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1.5.5 Sensitivity matrix associated with a least-squares plane
fit to data

The calculations associated with an axis give above in section 1.5.1 allow us
to evaluate the sensitivity matrix associated with a least-squares plane fit to
data. Given a location point x4 and unit direction vector v 4, the equation
of the associated plane can be written as

(x—x4)"v4=0.

The calculations involve a parametrization of the plane in terms of three
parameters a in which the kth coordinate of v4 is held fixed and only the
kth coordinate of x4 is free.

Procedure for evaluating the plane feature sensitivity matrix

Inputs

1. Plane locating point x4 and unit axis direction vector v 4, ||[vall = 1.

2. Point coordinates coordinates x1.,, for points lying on or close to the
plane specified by b where b’ = (:L'X, ’U:D.

3. Weights w1.p,, w; > 0.

4. Coordinate index k specifying the parametrization of the plane to be
used.

Outputs

1. 6 x m sensitivity matrix Gp|p of b with respect to changes in 1.,
normal to the plane surface, where b is determined from a weighted
least squares fit to the data.

2. 3xm sensitivity matrix G 4 p of a with respect to changes in 1., nor-
mal to the plane surface, where a are associated with the parametriza-
tion specified by k and is determined from a weighted least squares fit
to the data.
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3. Point coordinates x7.,, of footpoints, i.e., ] is the point on the plane
surface specified by b closest to x;.

4. Outward pointing unit normal vectors n.,, corresponding to x7.,,.

5. m x 3 Jacobian matrix associated with an unweighted least-squares fit
and parameters a.

Procedure
1. For each i = 1,...,m, set d; = (z; — x4) va, m; = va, and x; =
r; — dlnz
2. Assign the m x 6 Jacobian matrix Jp: for each i = 1,...,m, set
Jp(i,1:6) =[-n,, (x; —xa) "]

3. Assign sensitivity matrix G4 depending on k:

(a) if k=1, set

1 0 0

0 0 0

0 0 0

GB‘A_ 0 wyqg —va

0 0 UA
| 0 —ua 0 |

(b) if k = 2, set

0 0 0]

1 0 0

0 0 0

Gra=| 0 —wva

0 —wy UA
L O vA 0 |

(c) if k=3, set

[0 0 07

0 0 0

1 0 0

Gpa=| 0 wy

0 —wgy 0
L0 va —ua |
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4. Form Jacobian matrix with respect to a: J = JpGp|4.

5. Form weighted Jacobian matrix Jyy: foreachi =1,...,m,set Jyy (i, 1 :
3) = w?J(i,1:3).

6. Form sensitivity matrix G4 p = — (JTJW)i1 JVTV.

7. Form sensitivity matrix Ggp = GpjaGpp-

We note that the unit normals associated with x7.,, are given by n; = v 4.

Analytical approximation for measuring a rectangular area

Suppose data points x1., are distributed approximately on the plane z = 0
with —a < z; < a and —b < y; < b and J is the m x 3 Jacobian matrix
associated with fitting a plane to the data with J (4,1 : 3) = (—1,z;, ;). This
Jacobian matrix corresponds to parametrization in terms of the z-coordinate
of &4 and the 2- and y-coordinates of v4, @ = (z4,u4,v4)". Then, using
the principle of Monte Carlo integration (I1.55),

1
—J"J ~ Hy,
m

where
1 0 0
Hyp=10 a?/3 0 |. (1.62)
0 0 b*/3
Set
1 0 0
Va=H,'=10 3/a®> 0 |. (1.63)
0 0 3/b?

If the variance matrix associated with 1., is approximated by 0'12%1 , then
the standard uncertainties u(a) associated with the parameters is given by

u(a) = %(1, V3/a,v/3/a)". (L.64)

Thus, the uncertainty in the angle of rotation about the z-axis scales with
1/b by that associated with rotation about the y-axis scales with 1/a.
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I.5.6 Sensitivity matrix associated with a least-squares cylin-
der fit to data

The calculations associated with an axis give above in section 1.5.1 allow us
to evaluate the sensitivity matrix associated with a least-squares cylinder fit
to data.

Procedure for evaluating the cylinder feature sensitivity matrix

Inputs
1. Cylinder axis locating point @ 4, unit axis direction vector v 4, ||[v4|l =
1, and cylinder radius ryg.

2. Point coordinates coordinates x1.,, for points lying on or close to the
cylinder surface specified by b where b' = (w}, v}, 70).

3. Weights wy.y, w; > 0.

4. Coordinate index k specifying the parametrization of the cylinder to
be used.

Outputs

1. 7 x m sensitivity matrix Gpgp of b with respect to changes in 1.y,
normal to the cylinder surface, where b is determined from a weighted
least squares fit to the data.

2. 5xm sensitivity matrix G 4|p of a with respect to changes in 1., nor-
mal to the cylinder surface, where a are associated with the parametriza-
tion specified by k and is determined from a weighted least-squares fit
to the data.

3. Point coordinates 7., of footpoints, i.e., ] is the point on the cylin-
der surface specified by b closest to x;.

4. Outward pointing unit normal vectors 1.y, corresponding to x7j.,,.

5. m x 5 Jacobian matrix associated with an unweighted least-squares fit
and parameters a.
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Procedure

1. For each ¢ =1, ..., m, evaluate the vector cross product
§i = (@i —xa) X V4,
calculating &; = (&,m:,G) ", and set r; = ||€]| and d; = r; — ro.

2. Assign the m x 7 Jacobian matrix Jg: for each ¢ = 1,...,m, set
Jp(i,1:7) to be the vector

T
nwa — Gua
Giua — &wa
od,T 1 §iva — niua
b ni(zi — za) — Gi(yi — ya)
Gi(wi —xa) — &i(2i — 24)
§i(yi —ya) —mi(zi — xa)
L -1 i
3. Foreachi=1,...,m, set n; = —Jp(i,1:3)7 and x; =x; — din,.

4. Assign sensitivity matrix G4 depending on k:

(a) if k=1, set

[0 0 0 0 0
10 0 0 0
0 1 0 0 0
Gpa=1]10 0 wa —va 0 |;
00 0 wuag O
0 0 —ugy 0 0
o0 0 0 1]
(b) if k = 2, set
1 0 0 0 07
00 0 00
01 0 0 0
Gpa=10 0 0 —vaqa O |;
0 0 —wy uyg 0
0 0 VA 0 0
o0 0 0 1]
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(c) if k=3, set

10 0 0 0
0 1 0 0 0
0 0 0 00
GB|A =100 0 wy O
0 0 —wy 00
0 0 vg —ug 0
L 0 0 0 0 1 |

5. Form Jacobian matrix with respect to a: J = JgGp|4.

6. Form weighted Jacobian matrix Jyy: foreachi =1,...,m,set Jy(i,1:
5) = w?J(i,1:5).

7. Form sensitivity matrix G p = — (JTJW)i1 JVTV.

8. Form sensitivity matrix Gpp = GpaGp|p-

Analytical approximation for measuring a cylindrical patch

Suppose data points 1., = (1o cos;, rosinb;, z;) | are distributed approxi-
mately on a cylinder 2% + y? = 7“(2) with —a < 0; <a<mand —a < z < a.
Let 4 = (z4,94,24)" and v4 = (ua,v4,wa)" specify the locating point
and direction vector of the cylinder axis. Parametrizing the cylinder in terms
of a = (xa,ya,ua, vA,'r'o)T, the associated m x 5 Jacobian matrix has ith
row given by

J(i,1:5) = —[cosf; sinf; — z;sinb; z;cosb; 1].
Then, using the principle of Monte Carlo integration (I1.55),

1
—J"J ~ Hyg,
m
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where the nonzero elements of H,, are specified by

= % (a+ (sin2a)/2),

H,.(1,5) = (sina) /v

H,(1,1)

Hon(2,2) = % (0 — (sin2a)/2),
CL2

H.(3,3) = 5o (o — (sin2a) /2) ,
(12

Hy(4,4) = 6o (a4 (sin2a)/2),

Hoo(5,5) = 1.

For o« = m, corresponding to data approximately uniformly space on the
cylindrical surface then

/2 0 0 0 0
0 1/2 0 0 0
Hyz=| 0 0 a%/6 0 0|,
0 0 0 a?/6 0
0 0 0 0 1
and
20 0 0 0
02 0 0 0
Var=H =10 0 6/a> 0 0|,
00 0 6/ 0
00 0 0 1

showing that the uncertainties associated with the direction vector v 4 scale
with 1/a (but are independent of the radius o). For general «, the elements
in the first, second and fifth rows and columns of H,, above are exactly
the same as the elements of H, in (I.56) associated with the analysis of
measurements of an arc of a circle. In particular, the behaviour for mea-
surements of a section of a cylinder subtending a small angle can be derived
from the analysis on an arc of a circle. Let V,, = Ha_al. The matrix V,
given by (1.60) is a submatrix of V. For points approximately uniformly
distributed in —a < 6; < a < 7, —a < z; < a and if the point cloud data
is associated with variance matrix Vx = J%I , then the variance matrix Vy
associated with the fitted cylinder parameters a is approximated by

2
Vi~ £V, (1.65)
m
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Table 1.8: Square roots s(a) of the diagonal elements of V,, in (I1.65). For
points 1., approximately uniformly distributed over a segment of a cylinder
with —a < 0; < a < 7 and —a < z; < a, and point cloud variance matrix
Vx = 0%, the uncertainties u(a) = ogs(a)//m.

2a/deg s(za) s(ya) | as(ua) | as(va) s(ro)
360 1.41 1.41 2.45 2.45 1.00
270 1.81 1.28 2.22 2.76 1.14
180 3.25 1.41 2.45 2.45 2.30
160 3.96 1.51 2.61 2.31 2.97
140 5.00 1.65 2.85 2.18 3.98
120 6.62 1.85 3.20 2.06 5.56
100 9.30 2.14 3.71 1.96 8.23

80 14.25 2.61 4.51 1.88 13.16

60 24.95 3.40 5.89 1.81 23.85

40 55.54 5.02 8.70 1.77 54.42

20 220.70 9.95 17.24 1.74 219.58

a <5 deg
a/rad | =~ V45/a® | = V3/a | =3/a| ~3 | ~V45/a? ‘

Table 1.5.6 shows the square roots s(a) of the diagonal elements of V,, as a
function of a (the height of the cylinder is 2a) and . For Vx = 0%, u(a) =
ors(a)/+/m. For a small arc of a cylinder, « near zero, the uncertainties in
the z-coordinate of the axis locating point and the radius scale with 1/a2,
the y-coordinate of the axis locating point and the angle of rotation about
the x-axis scale with 1/« while the angle of rotation of about the y-axis is
well defined. The angles of rotation scale with 1/a.
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1.5.7 Sensitivity matrix associated with a least-squares cone
fit to data

The calculations associated with an axis given above in section 1.5.1 and
a cylinder fit can be extended to evaluate the sensitivity matrix associated
with a least-squares cone fit to data. The calculations below are based
on specifying the cone in terms of an axes locating point x4, an axis unit
direction vector v 4, cone radius ry, and cone angle ¢. The radius parameter
is the radius of the circle defined by the intersection of the cone with the
plane passing through x4 and orthogonal to v4, i.e., the set of points «
satisfying (z —x4) v = 0. The cone angle is the angle the cone generator
makes with cone axis, i.e., half the vertex angle, with the convention that
if ¢ > 0, then the vertex of the cone lies at 4 + tv4 with ¢ > 0. While
it may be natural to use the cone vertex as the axis locating point, the
parametrization in terms of a radius remains stable for cone angles near
Zero.

The distance d from a point @ to a cone specified by b = (), v),r0,0)"
is given by

d =d(x,b) = (cos p)dc(x,b) + (singp)dp(x, a), (1.66)

where d¢(x, b) is the distance of @ to the cylinder specified by x4, v4 and
ro and dp(x,b) is the distance of @ to the plane specified by €4 and v 4.

Procedure for evaluating the cone feature sensitivity matrix

Inputs

1. Cone axis locating point @ 4, unit axis direction vector v 4, ||[val| =1,
and cone radius rg at 4, and ¢, the angle the cone generator makes
with the cone axes.

2. Point coordinates coordinates 1., for points lying on or close to the
cylinder surface specified by b where b’ = (:13}, vl, 0, O).

3. Weights w1, w; > 0.

4. Coordinate index k specifying the parametrization of the cone to be
used.
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Outputs

1. 8 X m sensitivity matrix Gp|p of b with respect to changes in 1.,
normal to the cone surface, where b is determined from a weighted
least squares fit to the data.

2. 6 xm sensitivity matrix G 4|p of @ with respect to changes in 1., nor-
mal to the cone surface, where a are associated with the parametriza-
tion specified by k and is determined from a weighted least-squares fit
to the data.

3. Point coordinates 7., of footpoints, i.e., x; is the point on the cone
surface specified by b closest to x;.

4. Outward pointing unit normal vectors n1.,, corresponding to x7j.,,.
5. m x 6 Jacobian matrix associated with an unweighted least-squares fit

and parameters a.

Procedure

1. For each i =1, ..., m, evaluate the vector cross product
& = (zi —@a) X v4,
calculating &, = (&, m:,¢) ", and set r; = ||€]| and dc; =ri — 0.

2. Assign the m x 7 Jacobian matrix J¢ p associated with a cylinder fit:

for each i =1,...,m, set Jo p(i,1:7) to be the vector
[ niwa — Gua 17
Giua — §wa
odc; T 1 §ivA — 1iUA
% ni(zi — za) — Gi(yi — ya)
" G —za) — &z — 2a)
§i(yi —ya) —mi(zi — z4)
—1
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3. Set dp; = (x; — x4) v and assign the m x 6 Jacobian matrix Jp,B
associated with a plane fit: Jpp(i,1:6) = [-v}, (x —xa)'].
nwa — Giva 1"
Giua — §iwa
ode; T 1 §iva — miua
5 - ni(zi — z4) — Gi(yi — ya)
Glzi —xa) — &i(zi — 2a)
§i(yi —ya) — mi(wi — xa)
—1

4. Assign d; = (cos¢)dc; + (sing)dp,; and assign the m x 8 Jacobian
matrix Jpg:

e For j=1,...,6, set
JB(i,7) = (cos¢)Jo,g(i,5) + (sing)Jpp(i,j), i=1,...,m.
e For j =7, set
Jp(i,j) = (cosp)Jc (i, j5), i=1,...,m.
o For j =8, set
Jp(i,j) = —(sinp)dc; + (cos p)dp;, i=1,...,m.
5. Foreachi=1,...,m, set n; = —Jp(i,1: 3)T and ] = x; — d;n;.

6. Assign 8 x 6 sensitivity matrix G'pj4 depending on k. Initialise all
elements to zero, set G A(7,5) = Gpja(8,6) = 1 and:

(a) if k=1, set

0 0 0 0

1 0 0 0

0 1 0 0
Gpa(l:6,1:4) = 00 wi —vs |

0 0 0 UA

00 —us O]
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(b) if k =2, set

(1 0 0 0]
0 0 0 0
0 1 0 0
Gpa(l:6,1:4)= | |, 0 s |
0 0 —wa ugy
L0 0 vA 0 |
(c) if k = 3, set
1 0 0 0]
0 1 0 0
0 0 0 0
Goa(l:6,1:4)= | |, 0w
0 0 —wau 0
10 0 VA —Ua |

7. Form Jacobian matrix with respect to a: J = JpGp|4-
8. Form weighted Jacobian matrix Jy: for each i =1,...,m, set

Jw(i,1:6) = w?J(i,1:6).

9. Form sensitivity matrix G4 p = — (JTJW)_1 JVTV.

10. Form sensitivity matrix Gp)p = GpaGp|p-

Analytical approximation for measuring a patch of a cone

Suppose data points @i., = (r;cosb;,r;sin Gi,zi)T, r; = T9 — tan ¢z;, are
distributed approximately on a cone with 4 = 0, v4 = (0,0,1)7, with
—a<0; <a<mand —a < z; < a. Parametrizing the cone in terms of
a = (xA,ya,ua,04,70,$) ", the associated m x 6 Jacobian matrix has ith
row given by

[ —cos¢cost; ]
— cos ¢ sin b;
w; sin 6;
—wj cos b;
—Ccos ¢

z;/ cos ¢

J(i,1:6) = ,  w; = z;/ cos ¢ — rosin ¢.
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Table 1.9: Square roots s(a) of the diagonal elements of V.4 as a function
of ¢. For points x1.,,, approximately uniformly distributed over cone with
cone angle ¢, —m < 6; < 7w and —a < z; < a, a = 100 and point cloud
variance matrix Vy = 0%1, the uncertainties u(a) = ogs(a)/y/m.

o/deg | s(xa) | s(ya) | s(ua) | s(va) | s(ro) | s(¢)

O 1.41] 141| 0.05| 0.05| 1.00 | 0.03

10 1.71 | 171| 0.05| 0.05| 1.02]| 0.03

20| 238 | 238| 0.05| 0.05| 1.07 | 0.03

30| 321 | 321 | 0.04| 0.04| 1.17 ] 0.03

40 | 4.14 | 4.14 | 0.04 | 0.04 | 1.35] 0.03

50 | 5.28 | 5.28 | 0.03 | 0.03 | 1.66 | 0.02

60 7.12 7.12 0.03 0.03 | 2.31 | 0.02

70 | 13.59 | 13.59 | 0.03 | 0.03 | 4.80 | 0.02

Then, using the principle of Monte Carlo integration (I1.55),
1
—J T & Hyng,
m

where the nonzero elements of H,,4 are given by the integrals of functions
of 0, z and ¢ determined from the form of the Jacobian matrix above.
The integrals are somewhat more complicated than the other cases already
considered but can be easily evaluated using one dimensional quadrature
routines [37]. Here we give some example calculations. Table 1.9 shows the
square roots s(a) of the diagonal elements of Vo4 = Haag as a function of ¢
for the case a = m, rg = 50 and a = 100. For Vx = 0%, u(a) = ogs(a)/\/m.
As ¢ approaches 90 degrees, the uncertainties associated with x4, y4 and
ro increase markedly.

Table 1.10 shows the square roots s(a) of the diagonal elements of V4 as
a function of a. For Vx = 0%, u(a) = ogs(a)/y/m. For a small arc of a
cone, « near zero, the uncertainties associated with x4, ua, va, rg and ¢
scale with 1/a? while those associated with the y4 and ua scale with 1/a.
No parameter is well defined.
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Table 1.10: Square roots s(a) of the diagonal elements of V44 as a function

of a.. For points @1.,, approximately uniformly distributed over a segment

of a cone with cone angle ¢ = 45 degrees, —a < 0; < a < 7 and —a <

z; < a, and point cloud variance matrix Vx = U%I , the uncertainties u(a) =
ors(a)/ym.

20/deg | s(wa) | 5(ya) | as(ua) | as(va) | s(ro) | s(¢)

360 4.06 | 4.06 0.04 0.04 1.73 | 0.03

270 521 | 3.69 0.04 0.05 1.97 | 0.03

180 9.33 | 4.06 0.04 0.10 3.98 | 0.07

160 11.37 4.34 0.05 0.12 5.14 | 0.09

140 | 14.37 | 4.73 0.05 0.15 6.89 | 0.12

120 | 19.01 | 5.30 0.06 0.20 9.64 | 0.17

100 | 26.72 | 6.15 0.06 0.28 | 14.25 | 0.25

80 | 40.94 | 7.48 0.08 0.43 | 22.79 | 0.39

60 | T71.67 | 9.77 0.10 0.75 | 41.31 | 0.72

40 | 159.51 | 14.43 0.15 1.67 | 94.27 | 1.63

20 | 633.90 | 28.59 0.30 6.62 | 380.32 | 6.59

I.5.8 Sensitivity matrix associated with fitting a point cloud
to a CAD model

Suppose that 7., lie on a design surface S given parametrically u — s(u)
and that the normal vector to the surface S at x; is n;. Suppose x1.,, are
measurements of x7.,, and that t solves least squares orthogonal distance
regression problem

min d*(z;,S),
) ; (i, S)

where
1

TiTIYS

Zo
R(a)(x; —xp), t= [ o } .
In these calculations, t defines a transformation involving translation vector
x, rotation angles a and parameter S setting a global scale adjustment that
maps the data xi.,, as close as possible to the design surface S according
to the least-squares criterion. Uncertainties associated with the measured
data can be propagated through to the fitted parameters ¢ using the general

scheme for least-squares fitting described in section 1.5.2. If the solution ¢
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is given by t = 0 then the m x 7 Jacobian matrix at the solution is given by

*

J@,1: 71" = | xf xn?

T %
—x; ny

Note that this Jacobian matrix depends on the shape of the surface only
through «; and n}. Hence, given any freeform surface and a measurement
strategy defined by x] the associated normal vectors n; can then be calcu-
lated allowing J and derived sensitivity matrices to be evaluated.

If the surface S has symmetries, e.g., with respect to translation along the
z-axis or rotation about the z-axis, then the corresponding column of the
Jacobian matrix can be removed. Similarly, if no global scale adjustment is
desired, the final column of J can be removed.

The scheme above assumes that the solution parameter vector t is near zero.
For the more general case, suppose the solution ¢y defines the 3 x 3 rotation
matrix Ry and that the global scale correction parameter is Sy and that Vy
is the 3m x 3m variance matrix associated with the point cloud @1.,,. Then
the variance matrix Vg associated with the transformed data ., is given
by .

-
(1+ SO)QRVXR ’
where R is the 3m x 3m block diagonal matrix with Ry on the diagonal
blocks. The variance matrix Vg can then be propagated through to ¢ = 0
using the scheme above, where t is now regarded as adjusting the fixed t;.
If GT| 5 is the sensitivity of ¢ with respect to @1, then the sensitivity of ¢
with respect to x1.,, is given by

Ve =

1
Grix = 1+ SO)QGT\)?R'
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I.5.9 Uncertainty contribution associated with establishing
a datum

See also [22, 18]. Many procedures to establish a datum frame of reference
from measured coordinates @i., can be written in terms of establishing
a rigid body transformation to satisfy six frame of reference constraints.
For example, in the calibration of 3 dimensional reference artefacts such as
ball-plates, it is usual to specify the frame of reference of the ball centres by
having one ball centred at the origin, 1 = 0, a second centred on the z-axis,
y2 = 29 = 0, and a third positioned in the xy-plane, z3 = 0, six constraints
in all. These constraints can usually be written as C'Tx1 : m = ¢y, where C
is a 3m x 6 matrix.

Let x1.,,, associated point cloud variance matrix Vy, constraint matrix C'
and ¢y be given with the assumption that CTx1m ~ ¢, that is, @1,
approximately satisfies the frame of reference constraints. Define & by

zi(t) =T (z,t) = R(a)(x; — x0), (I.67)

a rigid body transformation. We look for ¢ such that .., satisfies the frame
of reference constraints exactly: CT&1., = cg. Since xi., approximately
satisfies the constraints, to first order approximation, 1., = ®1.,m + Gt
where G is the 3m x 6 matrix of partial derivatives of &;.,,, with respect to
t evaluated at t specifying the identity transformation. We note here that
G constructed from 3 x 6 blocks

1 0 0 0 —Z3 Yi
GZ' = 010 Z5 0 —X; . (1.68)
0 0 1 —Yi xX; 0

To first order, t is defined by the equation CT(x1., + Gt) = ¢y so that
t=(C"G) ey — CTx1.y). The 6 x 3m sensitivity matrix Grx of t with
respect to @1.p, is therefore

Grx =—(CTG)"'CT. (1.69)

If the variance matrix associated with @1.,,, is Vx, then the variance matrix
Vr|x associated with ¢ is given by

Vrix = GT|XVXG;|X- (1.70)
Applying T defined by t to ®1.,,, to first order,
Elm = T1m + G(CTG) Heg — CTarm). (1.71)
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This last equation defines &1.,,, as a linear function of x1., and allows us
to propagate the variance Vx associated with xi., through to that, Vs,
associated with &1.,,:

Ve =(I-G(CTa)ehvx(I-aeTa)~lehT.

If the transformation 7', defined by ¢, is applied to another data set zi,,
with 2, = T'(x4,t) and Gz is the 3p x 6 sensitivity matrix constructed from
Z1:p as in (1.68, then the variance contribution to the transformed data 2.,
is given by

T T

where Gz x = GzGr7|x. In other words, V7 is the variance contribution
to the variance associated with z1., arising from the procedure to establish
a datum frame of reference from xi.,,. If 1., is correlated with z1..,, for
example, if they are measured at the same time using the same CMM as is
often the case and the joint variance matrix associated with them is given
by
[ Vx  Vxz ]
V)?Z Vz ’

then the variance matrix VEI  associated with zy., is given by
T T T
VZlX = GZ|XVXGZ|X + GZ|XVXZ -+ VXZGZ|X + V5.

The expression for Vz . includes the variance contribution associated with

Z|1x
both 1., and 2., taking into account their correlation.
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1.6 Effect of form error on extracted features

Given surface points s; = s(u;, a) on idea design surface with normal vectors
n;, i € I ={1,...,m}, we can model form errors with an actual workpiece
according to

w: = s; + fin;.

We provide statistical model for the form errors by assigning
fe N (0, VF),

where Vr is an m X m variance matrix. The variance contribution to x7.,,
is given by
-
Vxip = NVEN

where N the 3m xm block-diagonal matrix constructed from ny.,,, as before.
We use a spatial correlation model for Vi of the form

Vi = oh I+ Ver(simlor, Ar), (1.73)
with ,
VEF (Zv ]) = G%e_dF’i‘jv (174)
where
X\, 0 0
d%’ij = (Si — Sj)TMF(Si — Sj)T, MF = 0 1/)\%71/ 0
0 0 1/A%,

The first term on the right of equation models variation in the surface ge-
ometry over short length scales, that is, roughness effects. The form of Mg
above allows spatially correlated components to be anisotropic, e.g., we may
wish to assign different length scales to straightness and circularity compo-
nents of the form error of a cylinder. Note that the spatial correlation is
determined by the point of contact on the design surface where as spatially
correlated location errors, section 1.3.7, need to take into account probe
offsets.

If Gyx = G’A|DNT is the sensitivity of features a with respect to a point
cloud 1., then the variance contribution Varr for the form errors to a is
given by

Valr = GA\XVXlFGZ\X = GA\DVFGZ\D

= O-%OGA\DGLD +GA|DVEFG—£‘D- (1.75)
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1.7 Uncertainties for derived features using Monte
Carlo sampling and the point cloud variance
matrix

The methods described in sections 1.4 to 1.5.9 are all based on deriving
the sensitivity matrix G4 x that is used to construct the variance matrix
V4 for the derived features a from the variance matrix Vy associated with
the point cloud «y.,,. For the features involved, the functional relationship
a = f(x1.,) of a on the point cloud is smooth and almost linear so that the
first order approximation of f and the application of the law of propagation
of uncertainty (I.1) is very effective in estimating uncertainties associated
with the derived features. As noted in section 1.2.1, for features derived
according to Chebyshev and related criteria, the functional relationship is
not smooth and the first order approximation of f might not be fit for
purpose.

An alternative approach is to use a Monte Carlo sampling approach [3] as
summarised by (I.2), generating point cloud data sets @1., 4 and derived
features a;, = aq4(®1.m,q) for each data set, ¢ = 1,...,M. The variance
matrix associated with the sample ai.,, is an approximation to V4. In
order to implement the Monte Carlo approach, it is necessary to be able
to generate data sets X, that are samples from the distribution associated
with the point cloud. This is quite straightforward to implement. If the
point cloud variance matrix Vx associated with x1., can be factored as
Vx = KK (for example, from an eigenvalue decomposition), then if &1.,
is a sample from the standard multivariate Gaussian distribution!! O1:m,q €
N(0,I) then
L1:m,qg = L1:m + Kdl:m,qa

is associated with variance matrix Vy.

"Each element of §1.mm,4 is a sample from the standard normal distribution A0, 1).
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1.8 Example calculations

1.8.1 Three statistical characterisations based on MPE state-
ments

The simulations involve characterisations of CMM behaviour based on three,
MPE statements, the first, MPE1, with A = 0.5 um and B = 500.0 mm,
the second, MPE2, with A = 1.0 um and B = 200.0 mm, the third, MPE3
with A = 2.0 ym and B = 125.0 mm. These MPE statements have been
used to estimate the statistical parameters characterising the CMM influ-
ence factors. These prior estimates are given in table I.11. The second MPE
characterisation is essentially twice the first and the derived statistical pa-
rameters, og, og, etc., in column 5 of table I.11 are twice those in column
4; the length scale parameters Agp, etc., are the same. The third MPE
has a slightly different balance between A and B and the derived statis-
tical parameters in column 6 in table I.11 are not a simple scaling of the
parameters in columns 4 and 5. The statistical characterisations in terms of
length measurement are illustrated in figures 1.9-1.11. These figures show
compares twice the estimated standard uncertainty u(d) as a function of
distance d, and contributions relating to scale and squareness effects (S),
location effects (ET) and rotational effects (ER) compared with the MPE
statement A + d/B for the two characterisations.
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Effect Parameter | Unit | MPE1 | MPE2 | MPE3
MPE A pm 0.5 1.0 2.0

B mm 500.0 | 250.0 | 200.0

Repeatability OR pm 0.10 0.20 0.40
Scale, squareness s 1076 0.7 14 1.8
0Sa 106 0.7 1.4 1.8

00 106 0.7 1.4 1.8

Probe qualification opQ pm 0.10 0.20 0.4
Location OET pm 0.17 0.33 0.67
AET mm 125.0 | 125.0 | 125.0

Rotation OCER prad 2.0 4.0 5.0
AER mm 125.0 | 125.0 | 125.0

Probing op, pm 0.07 0.14 0.28

op pm 0.10 0.20 0.40

Ap 1 0.50 0.50 0.50

Table 1.11: Three sets of statistical parameters estimated from MPE state-
ments of the form A+ d/B.
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Figure 1.9: Twice the estimated standard uncertainty u(d) as a function of
distance d, and contributions relating to scale and squareness effects (S),
location effects (ET) and rotational effects (ER) compared with the MPE
statement A 4+ d/B (upper straight line) for statistical parameters given in
the third column in table I.11.
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Figure 1.10: As figure 1.9 but with the statistical parameters given in the
fourth column in table I.11.
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Figure I1.11: As figure 1.9 but with the statistical parameters given in the

fifth column in table I.11.
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1.8.2 Step gauge

The first set of calculations involve simulations measurements of a step gauge
with 26 steps of nominal length 10 mm situated at 20 mm intervals along a
measuring line. The simulations reported on here involve two scenarios. In
each scenario the step gauge is aligned with the z-axis.

Scenario I. This scenario assumes i) the 52 step faces are measured with
the same probe with probe offset p = (0.0, 0.0, —20.0)T mim.

Scenario II. This scenario assumes ii) the 26 left-facing faces are mea-
sured with a probe with offset p, = (0.0,20.0,0.0)" mm and the
26 right-facing faces are measured with a probe with offset pp =
(0.0, -20.0,0.0) " mm.

The extracted features derived from the measurements are:

d;; The distances between all faces, with d;; = ||z; — ;]|

drr;; The distances between left-facing faces.

drr;; The distances between right-facing faces.

drrr The estimated length of each step.
Table 1.12 gives the standard uncertainty associated with the location wlTnl
of the first face of the step gauge for the step gauge for scenario I and
three sets of statistical parameters given in columns 3-5 of table I.11, along
with the uncertainty contributions associated with the various effects. The
contributions for scenario II are largely the same. Figures 1.12-1.14 plot
twice the estimated standard uncertainty u(d) associated with distances
derived from measurements of a step gauge under scenario I and statistical
parameters given by columns 3-5 of table I.11 for the different extracted
features discussed above. The label ‘LL’ relates to distances between left-
facing faces, ‘RR’ to distances between right-facing faces and ‘FF’ to the
distances between the step faces for each step. Also plotted is the MPE

function A + d/B (upper straight line). Figures 1.15-1.17 provide the same
information as figures 1.12-1.14 but for scenario II. We note the following.

e Table 1.12 shows that all influence factors contribute directly to the
uncertainties associated with ac;r n. The rotational effects contribution
(ER) is small but would be larger for a longer probe offset.
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e Figures 1.12-1.14 show the difference between measurements of dis-
tances using the same probing direction, ‘LL’, and ‘RR’ and measure-
ments of distances involving both probing directions, ‘FF’, for exam-
ple, in terms of associated uncertainties. For the former case, probing
effects make no contribution; for the later case, the make a direct and
full contribution. For both cases (in scenario I), the probe qualification
effects make no contribution.

e Figures [.15-1.17 show the same behaviour as figures 1.12-1.14 but
also reflect the fact that probe qualification effects also contribute di-
rectly to the uncertainties associated with measurements for distances
involving both probing directions.

u(d)fmm

0 100 200 300 400 500 600
d/mm

Figure 1.12: Twice the estimated standard uncertainty u(d) associated with
distances derived from measurements of a step gauge under scenario I and
statistical parameters given by the third column of table I.11, MPE1. The
label ‘LI’ relates to distances between left-facing faces, ‘RR’ to distances
between right-facing faces and ‘FF’ to the distances between the step faces
for each step. Also plotted is the MPE function A + d/B (upper straight
line).
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u(d)/mm

0 100 200 300 400 500 600
d/mm

Figure 1.13: As figure 1.12 but for statistical parameters given by the fourth
column of table I.11, MPE2.

| u| ur|upg| wus|upr|ugr]| up]
MPEL | 0.36 | 0.10 | 0.10 | 0.26 | 0.17 | 0.04 | 0.12
MPE2 | 0.72 | 0.20 | 0.20 | 0.51 | 0.33 | 0.08 | 0.24
MPE3 | 1.19 | 0.40 | 0.40 | 0.64 | 0.67 | 0.10 | 0.49

Table 1.12: Standard uncertainty associated with the location & n1 of the
first face of the step gauge for the step gauge for scenario I and three sets

of statistical parameters given in columns 3-5 of table I.11.
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Figure 1.14: As figure 1.12 but for statistical parameters given by the fifth
column of table 1.11, MPE3.
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Figure 1.15: As figure 1.12 but for scenario II.
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u(d)/mm
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Figure 1.16: As figure 1.13 but for scenario II.
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Figure 1.17: As figure 1.14 but for scenario II.
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by by | b3
x4/mm | 0.0 0.0 0.0
0.0 | 140.0 | 0.0
0.0 0.0 | 10.0
va | 0.0 0.0 0.0
0.0 0.0 0.0
1.0 1.0 1.0
ro/mm | 25.3 9.5

Table 1.13: Parameters specifying the geometric elements associated with
the connecting rod.

[.8.3 Connecting rod

The second set of calculations involves the connecting rod involving two
cylindrical geometric elements and one plane element (the datum plane),
specified by locating points, direction vectors, and for the cylinders, radii;
see diagram [.18. The parameter vectors associated with the elements are
given in table 1.13. The measurement strategy involved gathering 16 points
at three parallel circles on each of the two cylinders and 8 points in a circular
pattern on the planar surface.

The simulations reported on here involve two scenarios:

Scenario I. This scenario assumes i) the measured points on the cylinders
are distributed uniformly around the cylindrical surface and that all
elements (two cylinders, one plane) are measured using the same probe
with probe offset p = (0,0, —20) .

Scenario II. This scenario assumes ii) the measured points on the large
cylinder are distributed on a 120° arc at bottom end of the connecting
rod (figure 1.18) and the measured points on the small cylinder are
distributed on a 120° at the top end of the rod, and ii) the two cylinders
are measured with two different probes, each with nominal probe offset
pi = (0,0,—20)", k = 1,2, but subject to different probe qualification
effects.

Table 1.14 shows the estimates of the uncertainties associated with the ex-
tracted features and derived features for scenario I and MPE1l. The ex-
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Figure 1.18: Connecting rod workpiece with three geometric elements.
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tracted features are related to the parameters associated with the two cylin-
ders and plane:

z4, ya The z- and y-coordinates associated with the locating point x4 asso-
ciated with the two cylinders.

z4 The z-coordinate associated with the locating point @ 4 associated with
the plane.

ua, v4 The z- and y-coordinates associated with the direction vectors va4
associated with the two cylinders and the plane.

ro The radii associated with the two cylinders.

(All other elements of the locating points and direction vectors are held
constant.) The uncertainties following derived features are also evaluated:

d1s the distance between the axis location points « 4 for the two cylinders
as measured in the plane z = 0.

a1z, the angle of rotation about the y-axis between the two cylinder direc-
tion vectors w4, i.e., the z-components of the direction vectors.

a1z, the angle of rotation about the z-axis between the two cylinder direc-
tion vectors w4, i.e., the y-components of the direction vectors.

Table 1.14 also shows the uncertainty contributions from the various influ-
ence factors: random effects (R), probe qualification effects (PQ), scale and
squareness effects (S), and spatially correlated location (ET), rotation (ER)
and probing effects (P), the latter three all assumed to be isotropic in that
the behaviour for each axis is the same. We note the following.

R The random effects uncertainty contribution to the x- and y-coordinates
of the cylinder location points (0.02 mm) is approximately /2 times
that to radii 7o in line with the analysis in section 1.5.6. The contri-
bution is small due to the averaging effect over m = 48 data points.

PQ The uncertainty associated with probe qualification contributes di-
rectly and in full to the uncertainties associated with the location point
parameters, but does not contribute to the derived features since the
probe qualification effect is modelled as a constant offset for measure-
ments.
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S

ET

ER

The scale and squareness effects make minimal contribution to the
locating point associated with the first cylinder since its location point
is at the origin. The scale and squareness effects contribute more
significantly to the location of the small cylinder by. The scale effects
contribute directly to the uncertainty associated with the distance dyo
between the two cylinder axes.

The spatially correlated location effects contribute to the uncertainties
associated with the location point parameters. The spatial correlation
length Agr =125 mm is greater than the cylinder radii so that the
location effects in the neighbourhood are significantly correlated and
act somewhat like a probe qualification effect. For the same reason,
they make minimal contribution to the uncertainties associated with
the radii rg. The correlation length Agp is larger that the distance
dis = 140 mm between the two cylinder axes so that no significant
cancellation of these effects arise, leading to a significant contribution
to u(dy2).

Rotational effects contribute only modestly to the uncertainties asso-
ciated with the features. Their contributions scale directly with probe
offset length.

The probe radius uncertainty represented by op, contributes directly
and fully to the uncertainty associated with the cylinder radii rg. Since
the probing directions for the two cylinders are exactly the same, the
probing effects make no contributions to the uncertainties associated
with the derived features di2, a12, and a2 .

Table 1.15 gives the same uncertainty estimates but for scenario II with
statistical parameters for MPE1 as in the third column of table I.11. We
note the following.

R

PQ

The uncertainty contribution from random effects to u(y4) and wu(rg)
are much greater due to the fact that only a 120° arc of the cylinder
is measured, as discussed in section 1.5.6; see also table 1.5.6.

Whereas for scenario I, probe qualification had no uncertainty contri-
bution to u(di2) since both cylinders were associated with the same
probe qualification effect, in scenario II, these effects are independent
and make a direct and full contribution to u(d;2).
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P For scenario II, the probing directions for the two cylinders are com-
pletely different and probing effects contribute directly to u(di2). They
do not make a contribution to u(o2,) and u(ai2,) since the probing
strategy for each of the three circular profiles on each cylinder is the
same.

Tables 1.16 and 1.17 give the uncertainty estimates but for scenarios I and
II, respectively with statistical parameters for MPE3 as in the fifth column
of table I.11. The tables show the same behaviour as tables 1.14 and 1.16
and the comments above apply.
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[ u[ un[urq | us

| upr | ugr | up

z4/pm 0.20 [ 0.02 [ 0.10 [ 0.01 [ 0.16 | 0.04 | 0.05
ya/pm 0.20 | 0.02 | 0.10 | 0.01 | 0.16 | 0.04 | 0.05
ua/prad | 3.70 [ 3.12 | 0.00 | 0.71 | 1.81 | 0.43 | 0.00
va/prad | 3.70 | 3.13 | 0.00 | 0.71 | 1.81 | 0.43 | 0.00
ro/pm 0.09 | 0.01 | 0.00 | 0.02 | 0.03 | 0.01 | 0.08
24 /pm 0.23 ] 0.02 | 0.10 | 0.10 | 0.17 | 0.04 | 0.05
ya/pm 0.25 | 0.02 | 0.10 | 0.14 | 0.17 | 0.04 | 0.05
ua/prad | 6.58 | 6.25 | 0.00 | 0.71 | 1.87 | 0.45 | 0.00
va/prad | 6.58 | 6.25 | 0.00 | 0.71 | 1.87 | 0.45 | 0.00
ro/pm 0.08 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.08
Za/pm 0.23 ] 0.04 | 0.10 | 0.03 | 0.16 | 0.00 | 0.12
us/prad | 2.60 | 1.87 | 0.00 | 0.00 | 1.80 | 0.00 | 0.00
va/prad | 2.60 | 1.87 | 0.00 | 0.00 | 1.80 | 0.00 | 0.00
dio/pm 0.24 | 0.03 | 0.00 | 0.14 | 0.19 | 0.05 | 0.00
19, /prad | 7.34 1 6.99 | 0.00 | 0.00 | 2.19 | 0.53 | 0.00
ag,y/prad | 7.33 1 6.99 | 0.00 | 0.00 | 2.16 | 0.52 | 0.00

Table 1.14: Standard uncertainties associated with derived features for the
connecting rod for scenario I and statistical parameters for MPE1 as in the
third column of table I.11.
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| |l ur| urg| us|upr[upr| ur
TA/pm 0.22 | 0.03| 0.10 | 0.02 | 0.17 | 0.04 | 0.10
YA/ pm 0.37 | 0.10 | 0.10 | 0.04 | 0.19 | 0.05 | 0.28
ua/purad 4.57 | 4.08 | 0.00 | 0.71 | 1.88 | 0.45 | 0.00
va/prad 3.33 | 2.63| 0.00 071 | 187|045 | 0.00
o/ pm 0.26 | 0.08 | 0.00 | 0.03 | 0.08 | 0.02 | 0.23
rA/pm 0.25 | 0.03| 0.10 | 0.10 | 0.17 | 0.04 | 0.10
YA/ pm 0.38 | 0.10 | 0.10 | 0.15 | 0.17 | 0.04 | 0.28
ua/prad 843 | 817 | 0.00 | 0.71 | 1.88 | 0.45 | 0.00
va/prad 5.64 | 5.25| 0.00 | 0.71 | 1.88 | 0.45 | 0.00
To/pm 0.25 | 0.08 | 0.00 | 0.01 | 0.03 | 0.01 | 0.23
zA/pm 0.23 | 0.04 | 0.10 | 0.03 | 0.16 | 0.00 | 0.12
ua/prad 2.60 | 1.87 | 0.00 | 0.00 | 1.80 | 0.00 | 0.00
va/purad 2.60 | 1.87 | 0.00 | 0.00 | 1.80 | 0.00 | 0.00
dy2/pm 0.53 | 0.14 | 0.14 | 0.17 | 0.25 | 0.06 | 0.39
aig/prad | 9.47 | 9.13 | 0.00 | 0.00 | 2.42 | 0.58 | 0.00
ai2y/prad | 6.39 | 5.87 | 0.00 | 0.00 | 2.44 | 0.58 | 0.00

Table 1.15: Standard uncertainties associated with derived features for the
connecting rod for scenario II and statistical parameters for MPE1 as in
the third column of table I.11. The uncertainty contribution from effects
associated with probe qualification and probing are highlighted in bold.
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| | u| ur[upg| us|upr|upr| up|
T4/ pm 0.79 | 0.08 | 0.40 | 0.04 | 0.64 | 0.10 | 0.21
ya/pm 0.79 | 0.08 | 0.40 | 0.04 | 0.64 | 0.10 | 0.21

ua/prad 14.58 | 12.50 | 0.00 | 1.77 | 7.22 | 1.08 | 0.00
va/purad 14.58 | 12.50 | 0.00 | 1.77 | 7.22 | 1.08 | 0.00

To/pm 0.36 | 0.06 | 0.00 | 0.05 | 0.13 | 0.02 | 0.32
TA/pm 0.85 | 0.08 | 0.40 | 0.25 | 0.66 | 0.10 | 0.21
YA/ pm 0.88 | 0.08 | 0.40 | 0.35 | 0.66 | 0.10 | 0.21

ua/prad 26.18 | 25.00 | 0.00 | 1.77 | 7.49 | 1.12 | 0.00
va/purad 26.18 | 25.00 | 0.00 | 1.77 | 7.49 | 1.12 | 0.00
To/pm 0.33 | 0.06 | 0.00 | 0.02 | 0.05 | 0.01 | 0.32
zA/pm 091 | 0.14 | 0.40 | 0.07 | 0.64 | 0.00 | 0.49
ua/prad 10.39 | 7.48 | 0.00 | 0.00 | 7.21 | 0.00 | 0.00
va/prad 10.39 | 7.48 | 0.00 | 0.00 | 7.21 | 0.00 | 0.00
dy2/pm 1.07| 0.12 | 057 | 0.35| 0.76 | 0.11 | 0.29
g2, /prad | 29.32 | 27.95 | 0.00 | 0.00 | 8.75 | 1.31 | 0.00
aqgy/prad | 29.29 | 27.95 | 0.00 | 0.00 | 8.64 | 1.30 | 0.00

Table 1.16: Standard uncertainties associated with derived features for the
connecting rod for scenario I and statistical parameters as in the fifth column
of table I.11.
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] u| ugr|upg| us|upr|ugr| up
24/ pm 0.88 ] 0.11]0.40 | 0.05] 0.66 | 0.10 | 0.38
ya/pm 146 | 0.39]040|0.11]0.76 | 0.11 | 1.10
ua/prad | 18.10 | 16.34 | 0.00 | 1.77 | 7.51 | 1.13 | 0.00
va/prad | 13.06 | 10.51 | 0.00 | 1.77 | 7.47 | 1.12 | 0.00
ro/pm 1.04 0.32 | 0.00 | 0.09 | 0.32 | 0.05 | 0.93
24/ pm 0.02 | 0.11 | 0.40 | 0.26 | 0.67 | 0.10 | 0.38
ya/pm 1.46 | 0.39 | 0.40 | 0.37 | 0.68 | 0.10 | 1.10
ua/prad 33.60 | 32.68 | 0.00 | 1.77 | 7.53 | 1.13 | 0.00
va/prad | 22.42 | 21.02 | 0.00 | 1.77 | 7.53 | 1.13 | 0.00
ro/pm 0.99 0.32 | 0.00 | 0.03 | 0.12 | 0.02 | 0.93
z4/pm 0.91 0.14 | 0.40 | 0.07 | 0.64 | 0.00 | 0.49
ua/prad | 10.39 | 7.48 | 0.00 | 0.00 | 7.21 | 0.00 | 0.00
va/prad 10.39 7.48 | 0.00 | 0.00 | 7.21 | 0.00 | 0.00
dy2/pm 2.06 0.55 | 0.57 | 0.43 | 0.99 | 0.15 | 1.56
a12.0/prad | 37.83 | 36.53 | 0.00 | 0.00 | 9.69 | 1.45 | 0.00
a12,y/urad 25.48 | 23.50 | 0.00 | 0.00 | 9.75 | 1.46 | 0.00

Table 1.17: Standard uncertainties associated with derived features for the
connecting rod for scenario I and statistical parameters for MPE3 as in the
fifth column of table I.11.
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1.9 Validation of the a prior: method

1.9.1 Measurements of a calibrated artefact

Suppose an artefact has associated features @ = (a1, ...,a,)" and that prior
information from a previous calibration is available and is summarised by

ac € /\/(a, Vo).

We interpret this statement that the calibrated values a¢ is a draw from
a multivariate Gaussian (normal) distribution with (unknown) mean a and
variance matrix V. Suppose also that a proposed measurement strategy
x1., is defined and that a statistical characterisation of the CMM to be
used to measure the artefact is also defined. For example, the statistical
characterisation could be derived from an MPE statement, as discussed in
section 1.4.8. The statistical characterisation allows the point cloud variance
matrix Vy to be estimated and, given the sensitivity matrix G 4 x of a with
respect to x1.,, the variance matrix V4 associated with the estimate a
derived from Vx:
Vy = GA‘XVXGLX.

The statistical characterisation states that any estimate a of a derived from
measurements of the artefact by the CMM is such that

ac N(CL, VA).

Assuming that the calibration experiment and the CMM measurement are
completely independent experiments (from the statistical point of view), we
have

a—ac eN(0,Vy+ Vo). (1.76)

Letting
Wac=Va+ Vo),

(assuming the inverse exists) the relationship (1.76) implies that
R? = (fL - ac)TWAc(& - ac) S sz

a draw from a x? distribution with n degrees of freedom. The observed value
R? can be compared with quantiles of the x? distribution to determine the
probabilities

a(R?) =Pr(€® > R*[¢* ~ x7), B(R?) =Pr(&® < R*€® ~ x3).
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If these probabilities are not too small, say greater that 0.05, the variance
matrix V4 (and hence Vx) can be regarded as a plausible statement of the
CMM uncertainty. Conversely, if a(R?) < 0.05, (B(R?) < 0.05), there is ev-
idence that V4 understates (overstates) the uncertainty associated with the
CMM measurements (assuming that the calibration information is valid).

Relationship to normalised errors

For the case n = 1, the test of consistency of @ and V4 with the calibration
information described above is related to the use of normalised errors in
assessing consistence of a test result with a reference value [28]. For the
univariate case we write

a € N(a,u*(a)), ac € N(a,ul), a—accN(0,u*(a)+u)

and X )
2 _ (@ —ac) e 2.
u®(a) + u

Since the probability density function p,2(z|v = 1) associated with a X2
distribution with one degree of freedom is such that p,2(z[v = 1) e /2,
o(R?) = Pr(¢* > R*|¢% ~ i) = Pr([¢] > Rlg ~ N(0,1)),

so that requiring a(R?) > 0.05 is equivalent to requiring that

a—acl  _ 1.

2¢/u?(a) + ug, a

En =

Calibrated form error

While associated features such as the radius of a cylinder derived from CMM
measurements can be used to valid an a priori uncertainty budget, if there
are only a small number of calibrated features the information available
for validation is small. The estimated form errors derived from fitting a
geometric element, such as a cylinder, to data potentially is a richer source of
validation information. Suppose 1., are measured points associated with a
calibrated surface u — s(u, a), depending on parameters a = (a1, ...,a,) ",
whose geometric form is known exactly, e.g., an ideal geometric element such
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as a cylinder and that dy.,,, = d(@1.m, @) are the residual distances associated
with the least squares best-fit surface to x1.,, defined by parameter estimates
a. Suppose also that Vx is the point cloud variance matrix associated
with @.y, derived using an a priori method (or otherwise). As discussed in

section 1.5.2, it is possible to derive the sensitivity matrix G DIx of d with

respect to 1., and evaluate the variance matrix Vs associated with d:

Vs =G5

-
D D|XVXGA

DX

As discussed in section 1.5.2, the sensitivity matrix G p|x can be factored as
TarT
Gpixy = @2Q2 N,

where Q2 is an m X (m — n) orthogonal matrix. As a consequence, V3 is
necessarily rank deficient and its inverse cannot be formed. However, the
projected residuals d = Q;d are such that

deN(0,V), Vi=QsVsQo,
and V5 is (in almost all practical cases) full rank. Hence
~ ~T 1~
RP=d Vildex;,_,

and can be used to assess the validity of Vx, assuming that the surface
s(u,a) is free from form error.

More generally, if x; is measurement of s;+ f;n; where f; represents the form
error measured orthogonally to the surface at s; (as discussed in section 1.6),
and the form error has been characterised as

f € N(f07 VF)7
in a prior calibration exercise, for example, then
d—fo €N Vs +Vz), fo=Qifo, Vi=QsVrQs
enabling a validation assessment on the basis of the value of the hypothesis
R*(fo) = (d— o) "Wpr(d—fo), Wor=(Vp+Vp) ' €xorn.
If the only available prior information about f is that |fi.,| < F, then we
set fo =0 and Vg can be estimated by
F2

Vi~ 1

I,
for example, for K = 2, say.
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1.9.2 Repositioning experiments

The validation approaches discussed above in section 1.9.1 depend on having
external calibration information available. In a repositioning experiment,
the same artefact is measured using nominally the same measurement strat-
egy in a number of positions, k = 1,...,ng, in the working volume, possibly
with repeat measurements in nominally the same position, gathering data
sets X and associated extracted features a;. Since the artefact has is nom-
inally the same in each position (although there may be influence factors
relating fixturing and gravitational loading) and the points contacted on
the artefact are nominally the same and involve the same form errors, any
variation between X and associated features aj are due to CMM measure-
ment effects and, importantly, are largely independent of form errors.

Let
X1

X=| X

| X

nk |

and suppose the point cloud variance matrix Vx associated with X is par-
titioned accordingly,

V1T1 Vis - Ving

V Voo, - Vo
Vx = 1.2 . e

‘/11—7,]( VQ—’lr—LK e VnKnK

Let G4, x, be the n x 3m sensitivity matrix of a) with respect to X} and
G x the block diagonal matrix with G4, x, on the kth diagonal block.
Then the variance matrix Vyx associated with ai.,, is given by

Vaix = GaxVa Gy x-

For two positions k and ¢, the variance matrix Vy,, associated with ay, =
aj — ay is given by

Vik Vie

T
Vay = [ GAk|Xk _GAzlxe ] [ Vk—; Vi ] [ GAk|Xk _GAzlxe ]
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If the features a are independent of position, e.g., the radius of a cylinder,
then the observed difference a;, is such that

are € N(0,Vy,,), (1.77)
from which a validity test can be constructed as above.

The approach can be applied to the case where the associated features are
the projected residual distances d;, which are nominally independent of posi-
tion. The relationship in (I.77) can be used to assess the a prior uncertainty
estimate based on the pair-wise difference between projected residuals d;.
It is also possible to assess validity based on all the measurements simul-
taneously as follows. Let G DelXp = Q;kG Dl Xx be the sensitivity matrix

associated with the projected residuals di, = Q;kdk with respect to X and
G DIx the block diagonal matrix with G Dyl X, OR the kth diagonal block.

Then the variance matrix VD|  associated with c~i1;n « 1s given by
Viay = Gp o VxGL .
DX DIX " XY pix

The form errors f associated with the artefact can be parametrized as Qg}'
where @2 is the orthogonal matrix associated with a fit to nominal data
with the artefact in a nominal position and the model implies that

gll:nK € N(C}7 Vl~)|X) (178)

Here C is the ng(m —n) x (m — n) matrix constructed from Q] ,Q2, k =

1,...,ng. If f are the least squares estimates of f calculated by solving

mji?n (Ell:nK - Cf)TVﬁ_l?X—(&an - C.}'))

then the model in (I.78) implies that

RQ = (gll:'nK - C}.)TV[;EX(&an - Cf)

is a sample from X?n , enabling a validity test to be constructed.

r—1)(m—n)

Repeatability experiments

Repeatability experiments involve measuring the same artefact in the same
nominal position using nominally the same measurement strategy xi.,, and
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evaluating the same associated features a. The experiments may involve
remounting the artefact in the same position so that effects associated with
fixturing can influence the results but other effects are nominally the same:
geometric effects, probing effects, form errors, etc. Let X,., r =1,...,ng, be
the data sets recorded in the repeatability experiments and a, the associated
features derived from X,. The general model for CMM measurement in (I1.5)
separates out the systematic effects e; from the random effects €; and the a
priori method separates out point cloud variance matrix in a similar way:

Vx = Vg + Vg, VR:O'%%I.

For repeatability experiments, we assume that the systematic effects are
constant for each set of measurements

*
Lk 1:m = wk@;m +erm+ €k, 1:m-

Let G 4 x be the sensitivity of the associated features a with respect to 1.y,
for the fixed measurement strategy. Then

ar=a"+es+0,, es=Gyxerm,

with
8, € N(0,Var), Var =0rGaxGax-
Letting
L
= — a N
then .
R
R? = Z(ar - d)TVA_ﬁ%(ar —a) € X%nR—l)n'
r=1

This relationship can be used to assess the validity of Vg and since Vy g
depends only on og, the repeatability experiments can be used directly to
assess the validity of oi (as one would expect).

1.9.3 Posterior adjustment of statistical parameters

See also [1], sections 4.1 and 4.1 and [16].

The a priori model of CMM behaviour allows the variance matrix Vx to
constructed, given a measurement strategy. The type of validation experi-
ments described above involve using the fact that an observed sum of squares
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residuals R? is modelled as a draw from a x2 distribution with v degrees
of freedom. The mean of the distribution x2 is v. If the a priori method
accurately modelled the CMM uncertainty behaviour and the validation
experiments were carried out a number of times, then we expect that the
average value of R2 would be centred around v. This fact leads to a posterior
adjustment approach as follows.

Suppose a model predicts
R:=(a—a) " Vy'(a—a)cx2 (1.79)
but that there is some doubt about the variance matrix Vj in that it could

be out by an unknown scale factor o2, i.e., the true variance matrix V is
given by V = 02V} where ¢? is unknown. Writing

RP=R(0*)=(a-a) V' (a—a)=—

and equating R? with the expected value of v, we arrive at a posterior
estimate of

R?
A2 0
= 1.80
o > ( )
for o2. Thus, multiplying the input uncertainties by & leads to a residual

sum of squares R? that accords (optimally in some sense) with the model
predictions.

Repeatability experiments

If d, are residual error vectors associated with a set of repeated measure-
ments, then the projected residual errors d, = Qg d,. are such that

glr = Q;—f + Q;—eD +€, € € N(O,U%[),

where f are the form errors associated with the artefact and ep are the
fixed systematic effects associated with a:ZTnZ If d is the mean of the d,,
then a posterior estimate 6r of o is given by

1 e

———— > (d, — d)"(d, — d). (1.81)

6h =
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Posterior adjustment with prior information

The posterior estimate of o in (I.80) assumes that nothing is known about
the scale factor o2 prior to the validation exercise. A more flexible approach
is as follows, using a Bayesian hierarchical model [23, 35]. We suppose that
the model predicts that estimates a of parameters a are such that

alp € N(a,¢o"'Vo), ¢=072 (1.82)

where ¢ is a scaling parameter defined in terms of o2. We assume that a
prior estimate 0(2] of o2 is available. If Vj is our best estimate of the variance
matrix, then o3 can be taken to be 1. Associated with the estimate of is a
degree of belief parameter mg > 0 that model the confidence we have in the
estimate 03 with large my signifying more confidence. The parameter my
can be thought of as the number of repeat measurements taken to provide
the estimate o3. The prior information about o is encoded as

¢~ G(mo/2, moag/Z) (1.83)

where G(A, B) is a gamma distribution define in terms of shape parameter
A and rate parameter B or, equivalently,

2 2
m00-0¢ ~ Xmo *

Table 1.18 shows values of s = sqome = 1/v/0ame for ¢am, such that
Pr(¢ < damg) < a) for ¢ ~ G(mo/2,mp/2). For example, if mg = 10, the
table shows that there is 2.5 % prior probability that the true scaling factor
o < 0.7 or that 0 > 1.75. Assuming a non-informative prior p(a) « 1, the
relationships (1.82) and (1.83) define the joint distribution

p(a, ¢la) = p(ala, ¢)p(¢)
from which the marginalised distribution p(a|a can be calculated to be
ala ~ ty,(a,oaVp). (1.84)

If 0(2) = 1, as will be the case in our application, the fact that the scale
parameter is not known exactly means that the instead of a Gaussian state of
knowledge distribution for a of the form a ~ N(a, Vp), we have instead a ~
tme (@, V). As my — o0, the t-distribution approaches the corresponding
Gaussian distribution. For modest values of mg, say less than 20, the t-
distribution accords significantly more probability mass away from the mean
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that the corresponding Gaussian distribution. For mg > 2, the variance
matrix associated with ¢,,,(a, Vo) is mo/(mo — 2) representing the increase
in variance due to the longer tails of the t-distribution.

Given observed sum of squares R3 as in (1.79), the posterior adjusted esti-
mate 2 of o2 is given by

5-2 _ m()O'g + Va'Q _ < mo ) 0'8 1 ( 174 ) 6’2’ (185)

mo + v mo + vV mo + vV

a weighted average of the prior estimate 03 and the estimate 62 derived from
the validation experiment as in (I1.80). The posterior distribution for a is
given by

G/Ntmo_;_y(d,‘?), V:&Q‘/@

The marginalised posterior distribution for ¢ is such that
pla ~ G(m/2,ma%/2), m=mgy+ v.

If the prior information is weak in the sense that mg is small, relative to v,
then the posterior estimate 2 is close to that determined from the validation
experiment, namely 62 in (I.80). Conversely, if the validation involves only
a small number of measurements as represented by v, relative to mg, then
the posterior estimate is close to the prior estimate 08.

Posterior adjustment of a number of statistical parameters

The posterior adjustment scheme described above in section 1.9.3 relates to
estimating a single scale adjustment parameters o2. The a priori model
for CMM measurement involves a number of statistical parameters. The
one-parameter adjustment scheme can be applied to each of the statistical
parameters, so that
OR =00R, OET =O0O0FET,

etc. However, we may be more confident in the estimates of some of the
statistical parameters than others and applying a single scale adjustment
to all the parameters may not be appropriate. Here, we consider the case
where we want to apply separate adjustment schemes to the random effects
and systematic effects.

We assume a validation experiments gives rise to data y that can be modelled
(after linearisation if necessary) according to

y € N(Ca,dp' Vi + 05 Vi),
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where C' is a m X n observation matrix. Assuming a non-informative prior
p(a) x 1 for a, it is possible to determine the posterior distribution p(¢r, ¢r|y)
up to a normalising constant. Estimates QAS r and (ZS g can then be determined
finding the values that maximise p(¢g, ¢r|y). with prior information about
scale factors ¢p and ¢g given by

¢ng(mR/2>mR/2)a ¢E Ng(mE/27mE/2)’

(so that 1 is the prior expected value for both ¢r and ¢p).
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| mo\a | 0.025 | 0.050 | 0.100 | 0.900 | 0.095 | 0.975 |

1.00 | 045 | 0.51 | 0.61| 7.96 | 15.95 | 31.91
2.00| 052] 058 | 0.66 | 3.08| 4.42 | 6.28
3.00| 057 | 062] 069 | 227 | 292 | 3.73
4.00 | 060 | 065 | 0.72 | 194 | 237 | 2.87
5.00| 0.62| 067 | 074 | 1.76 | 2.09| 245
6.00 | 0.64| 069 | 075 | 1.65| 1.92| 2.20
7.00 | 066 | 0.71 | 0.76 | 1.57 | 1.80 | 2.04
8.00| 0.68| 0.72 | 077 | 1.51 | 1.71| 1.92
9.00| 069 | 073 | 078 | 147 | 1.65| 1.83
10.00 | 0.70 | 0.74 | 0.79 | 1.43| 1.59| 1.75
15.00 | 0.74| 077 | 082 | 1.32| 1.44| 1.55
2000 | 077 | 080 | 0.84| 1.27| 136 | 1.44
25.00 | 0.78| 0.81| 08| 123 | 131 | 1.38
30.00 | 0.80| 083 | 086 | 1.21 | 1.27| 1.34
35.00 | 081 | 084 | 087 | 119 | 1.25| 1.30
40.00 | 082 | 0.85| 088 | 1.17| 1.23 | 1.28
4500 | 083 | 085 | 0.88| 1.16 | 1.21| 1.26
50.00 | 0.84 | 0.86| 0.89| 1.15| 1.20| 1.24
60.00 | 0.85| 0.87| 090 | 1.14| 1.18| 1.22
70.00 | 0.86| 0.88| 090 | 1.12| 1.16 | 1.20
80.00 | 087 | 0.8 | 091 112 | 1.15| 1.18
90.00 | 087 0.89| 091 | 111 | 1.14 | 1.17
100.00 | 088 | 090 | 092| 1.10| 1.13 | 1.16
200.00 | 091 | 092| 094 | 1.07| 109 | 1.11
500.00 | 094 | 095 | 096 | 1.04| 1.06 | 1.07

Table 1.18: Values of s

¢a7m0) < a) for ¢ ~ g(mo/27m0/2).

= Sa,mg = 1/\/@ for ¢q,m, such that Pr(¢ <
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I.10 Nwumerical results

[.10.1 Repositioning and repeatability experiments

As part of an a posteriori (Type A) estimation of CMM uncertainty, a
large number of experiments have been undertaken to measure a number of
artefacts by a number of CMMs. In each experiment, the same artefact is
measured in ng = 4 different positions, with np = 5 repeat measurements
in each position, making a total of ngngr = 20 measurements of the artefact.
We denote by Xy, k=1,...,ng, 7 = 1,...,ng, the point cloud datasets
and by ayg, the features associated with data sets Xp,.. The fact that the
measurements involve repeat measurements means that posterior estimates
R can be derived using the approach described in section 1.9.2. Given 6,
an estimate 6 associated with the combined systematic effects can also be
determined.

1.10.2 Hyperbolic paraboloid

The measurements of a hyperbolic paraboloid relate a surface [33] whose
nominal shape is given by z = zy/64 in units of millimetres. The data set
in the first position relates to the nominal surface

z—27 = (z —48)(y — 48)/64, (1.86)

with m = 52 gathered with xy-coordinates located as in figure 1.19. The
second, third and fourth locations of the artefact are nominally determined
by rotating the artefact in position 1 through 90° about the z-, y- and z-axes.

The recorded data are distances dj,. that are interpreted to be the orthogonal
distances of the data x; to the nominal surface at x}, i.e., df = ||x; — x}|.
Given 7., lying on the nominal surface, associated normal vectors n.,, we
reconstruct the measured data according to ; = x; + d/n;, so that dj,. can
be used to reconstruct the datasets Xy, k=1,...,ngx =4, r=1,...,ng =

5.

A paraboloid is fitted to the datasets X, using a nonlinear least squares
orthogonal distance regression algorithm [6, 21] to determine vectors dy, of
residual orthogonal distances. The paraboloid is parametrized in terms of
three rotation angles a and six further parameters b such that

2 =22 9% &9, & 9, b &= R(a)x.
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For the hyperboloid in (I.86), nominally ' = [0,0,1/64, —3/4, —3/4, 63].

Associated with each position of artefact is matrix Q2 x and sensitivity ma-
trix Gf)|D = Qg}kQ;k. The projected residuals dg, = Q;kd;w are modelled
according to

dir = Qg1 Q2f + Qg ek + &r, & € N(0,0%1), (1.87)

where e, relate to the combined systematic effects applying in the kth po-

sition. If
1 & -
:7de’r, ]{::1,...,71[{,
R r=1

then a posterior estimate of og is given by

nK MR

a-?% = — n Z Z dkr - dk dk:r - dk) (188)

nKnR k=1r=1

derived from all nyng sets of measurements. With this posterior estimate
of o, we can also average (1.87) to yield

di = Q4 Q2f + €r + &, € €N(0,(6%/nr)]), €r=Qg e (1.89)
If we make the simplifying assumption that e, € NV(0, 0%70), then, letting
1 &

2 15~
>

a posterior estimate o ¢ of op o is given by

L NPT @) -6h/an (190)

k=1

2 e —
k0 = ng(m—n)

Given estimate o, equation (1.89) can be used to define the model
diny €N (CF,03(Vpip +6rD)), (L.91)

where Vg is the variance matrix associated with the projected residuals
due to the systematic effects and oy is a single scale adjustment for the
variance matrix. A posterior estimate &g of g can be determined following
the general approach described in section 1.9.3.

We note that the estimates 6 and 65 given in (I1.88) and (1.90) are essen-
tially those arising from an analysis of variance approach involving a random
effect and a position effect, analogous to a repeatability and geometry effects
in the a posteriori approach [39, 40].
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Figure 1.19: Nominal xzy-coordinates, of 52 points on a hyperbolic paraboloid
given in (I.86). The points marked with a cross are those for which uncer-

tainties are reported in the tables.
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Analysis of the hyperbolic paraboloid data

The measurements using eight CMMs at different laboratories have been
analysed. The main steps carried out in the analysis are:

1. From the A + L/B statement, assign statistical parameters o listed
in table I.11. The spatial correlation lengths were set to be Agr =
Agr = 10 mm, Ap = 0.3.

2. Determine prior estimates of uncertainties associated with @, n; for
measurements of the artefact in the first position.

3. Determine prior estimates of uncertainties associated with Ei, the fit-
ted residual distances, for measurements of the artefact in the first
position.

4. Reconstruct the datasets X, and calculate the residual error vectors
dy, by fitting a paraboloid to Xj,.

5. Determine of a posterior estimate 6r of or based on all the repeata-
bility measurements (1.88).

6. From 0g, determine estimate 6p o of the standard deviation of the
combined systematic effects (1.90). This estimate is for information
only.

7. With op adjusted to be the posterior estimate 6, determine a poste-
rior estimate 6o = dg|o of 0, based on the model (1.91).

8. Use the posterior estimates to adjust all the statistical parameters
(including op for a second time), e.g., 6pr = Googr, etc., accept
for those associated with probe qualification and scale effects. The
estimate of op is now 6¢oR.

9. Verify that the posterior-adjusted & statistical parameters are con-
sistent with the measurement data by showing that the equivalent
60,0 = 6¢|0 is close to 1.

The uncertainty estimation assumes that four separate probes are used for
each of the four positions, each of offset length 20 mm aligned with the main
probing direction, i.e, aligned with the z-, y-, x- and z-axes.
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CMI XENOS data

The prior estimates of the statistical parameters are given in the first nu-
merical column of table 1.19. Based on these estimates, the uncertainties
U; = u(ar:ZT n;) associated with measurements at nominal points x;, along
with the contributions frong various factors are given in table 1.20. Table .21

standard uncertainties u(d;) associated with fitted residual distances along
with uncertainty components relating to the various influence factors.

We note that while all the influence factors contribute to the uncertainties
associated with xm;, table 1.20, the probe qualification effects (PQ) and
scale and squareness effects make no contribution to the uncertainties asso-
ciated with d. Since only one probe is used in the simulation, the effect is
the same as that of a fixed offset and does not contribute to the residual
distances. Similarly, scale and squareness effects can be compensated by
changing the position and shape of the fitted paraboloid.

The analysis of the repeatability data gives a posterior estimate 6p =
0.034 pm, about half the prior estimate of cr=0.06 pm. The approxi-
mate estimate of the standard deviation o g associated with the systematic
effects is 0o = 0.077 pm. The posterior estimate of oq is 69 = 0.45, indi-
cating that the prior estimates of the statistical parameters are pessimistic
by a factor of about one half. The values of 6z and 6 are used to produce
posterior estimates & of the statistical parameters and these have been used
to provide estimates of the uncertainties u(cm&) associated with the residual
distances d. These are given in table 1.22. The prior estimates o have been
tuned to produce posterior estimates & that are optimally consistent with
the data.

Validation of the prior estimates

The value of 6y can be thought of as a single measure of the validity of the
prior estimates of the point cloud uncertainties and associated features. A
value of 69 = 1 indicates optimal consistency of the prior model with the
observed data. The values of og in the bottom row table 1.19 range from
0.4 (laboratory 3) to 2.2 (laboratory 7). The results associated laboratory
7 have some anomalous aspects with some outlying data observed so that
the value of ¢ for this laboratory is suspect. The next highest value of &¢
is 1.1, laboratory 5.
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1 2 3 4 5 6 7 8
A [/ 0.300 | 0.400 | 0.700 | 0.800 | 0.800 | 1.200 | 1.300 | 2.700
B || 1.000 | 0.900 | 0.600 | 0.400 | 0.400 | 0.770 | 0.300 | 0.300
or [ 0.060 [ 0.080 [ 0.140 [ 0.160 | 0.160 | 0.240 | 0.260 [ 0.540
o || 0.354 | 0.393 | 0.589 | 0.884 | 0.884 | 0.459 [ 1.179 | 1.179
05.a || 0.354 [ 0.393 | 0.589 | 0.884 | 0.884 | 0.459 | 1.179 [ 1.179
o || 0.354 | 0.393 | 0.589 | 0.884 | 0.884 | 0.459 | 1.179 [ 1.179
opr || 0.100 | 0.133 [ 0.233 [ 0.267 [ 0.267 [ 0.400 | 0.433 | 0.900
opr || 1.000 [ 1.111 [ 1.667 | 2.500 | 2.500 | 1.299 | 3.333 | 3.333
opq [ 0.060 [ 0.080 [ 0.140 | 0.160 | 0.160 | 0.240 | 0.260 | 0.540
op, || 0.042 | 0.057 | 0.099 | 0.113 | 0.113 | 0.170 [ 0.184 | 0.382
op || 0.060 | 0.080 | 0.140 | 0.160 | 0.160 | 0.240 | 0.260 | 0.540
&g || 0.036 | 0.069 [ 0.120 | 0.111 [ 0.042 | 0.182 [ 0.093 | 0.214
Gpo || 0.034]0.077 | 0.052 | 0.205 | 0.109 | 0.164 | 0.574 | 0.423
| 600464 | 0.703 | 0.405 | 1.141 | 0.440 [ 0.646 | 2.241 | 0.730 |

Table 1.19: Hyperboloid. Prior estimates the statistical parameters based
on MPE statements and values of statistical parameters based on the mea-
surement data. The units for ogr, opr, opQ, 0p,, 0P, 6r and 6g are um,
those for og, 054, 0g and ogr are pm/m and the unit for og is 1. The
CMMs involved are 1 — CMI XENOS, 2 — Tekniker, 3 — PTB UPMC, 4 —
PTB PMM, 5 - CUT PMM, 6 — CMI SIP, 7 — GUM, 8 — UNIPD (probing).
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The following comments can be made:

1. The range of the values of o¢ indicates approximate consistency of the
prior model with observed data, with the majority indicating the prior
model overestimates the uncertainty to some extent. The prior model
is based on just two numbers, A and B, associated with the MPE
statement. The statistical model we have used is based on scaling the
A and B values by a factor of K = 2 as in (I.3). Since the MPE
statement relates to the maximum permissible error, a larger value of
K, say K = 3, may be more appropriate.

2. While the values of oy indicate a possible overestimation of the uncer-
tainties, the paraboloid experiments do not involve difficult probing
strategies and multiple probe qualification effects so that other ex-
periments could produce data that display more variation due to more
effects have influence. As a consequence, the posterior estimates of the
parameters characterising probe qualification and scale and squareness
effects are set to be the same as their prior estimates as no new infor-
mation about them is available.

3. Two of the laboratories, 4 and 5, have the same MPE statement, the
values of 6 are significantly different. Being based on the MPE state-
ment alone, the prior estimates of the statistical parameters do not
take into account different environmental conditions, or other influence
factors such as fixturing, for example. However, if prior information
is available on environment, then the statistical parameters could be
adjusted appropriately.

4. The posterior estimates are based on the observed values of 6r and
60. Some averaging of the prior and observed values as in (1.85) might
be more appropriate. Based on the values in table 1.18, the prior
estimates have a degree of belief value of mg =~ 10.
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% v =] w] R[ Pa] S| BI] BR] P] |
53.500 8.500 23.605 || 0.154 || 0.060 | 0.060 | 0.029 | 0.100 | 0.011 | 0.073 || 0.141
44.500 8.500 29.160 || 0.154 || 0.060 | 0.060 | 0.030 | 0.100 | 0.011 | 0.073 || 0.141
35.500 8.500 34.715 0.154 0.060 | 0.060 | 0.031 | 0.100 | 0.011 | 0.073 0.142
26.500 8.500 40.270 || 0.154 || 0.060 | 0.060 | 0.032 | 0.100 | 0.011 | 0.073 || 0.142
17.500 17.500 41.535 0.154 0.060 | 0.060 | 0.032 | 0.100 | 0.011 | 0.073 0.142
26.500 17.500 37.246 || 0.154 || 0.060 | 0.060 | 0.031 | 0.100 | 0.010 | 0.073 || 0.142
35.500 17.500 32.957 || 0.154 || 0.060 | 0.060 | 0.030 | 0.100 | 0.009 | 0.073 || 0.141
44.500 17.500 28.668 || 0.153 || 0.060 | 0.060 | 0.029 | 0.100 | 0.009 | 0.073 || 0.141
53.500 17.500 24.379 || 0.153 || 0.060 | 0.060 | 0.028 | 0.100 | 0.009 | 0.073 || 0.141
62.500 17.500 20.090 || 0.153 || 0.060 | 0.060 | 0.027 | 0.100 | 0.009 | 0.073 || 0.141
71.500 26.500 19.105 0.152 0.060 | 0.060 | 0.023 | 0.100 | 0.009 | 0.073 0.140
62.500 26.500 22.129 || 0.153 || 0.060 | 0.060 | 0.025 | 0.100 | 0.008 | 0.073 || 0.140
53.500 26.500 25.152 || 0.153 || 0.060 | 0.060 | 0.027 | 0.100 | 0.007 | 0.073 || 0.141
26.500 26.500 34.223 0.154 0.060 | 0.060 | 0.030 | 0.100 | 0.009 | 0.073 0.141
17.500 26.500 37.246 || 0.154 || 0.060 | 0.060 | 0.031 | 0.100 | 0.010 | 0.073 || 0.142
8.500 26.500 40.270 || 0.154 || 0.060 | 0.060 | 0.032 | 0.100 | 0.011 | 0.073 || 0.142
8.500 35.500 34.715 || 0.154 || 0.060 | 0.060 | 0.031 | 0.100 | 0.011 | 0.073 || 0.142
17.500 35.500 32.957 || 0.154 || 0.060 | 0.060 | 0.030 | 0.100 | 0.009 | 0.073 || 0.141
62.500 35.500 24.168 0.152 0.060 | 0.060 | 0.023 | 0.100 | 0.006 | 0.073 0.140
71.500 35.500 22.410 || 0.152 || 0.060 | 0.060 | 0.022 | 0.100 | 0.008 | 0.073 || 0.140
71.500 44.500 25.715 0.152 0.060 | 0.060 | 0.020 | 0.100 | 0.007 | 0.073 0.140
62.500 44.500 26.207 || 0.152 || 0.060 | 0.060 | 0.022 | 0.100 | 0.005 | 0.073 || 0.140
17.500 44.500 28.668 || 0.153 || 0.060 | 0.060 | 0.029 | 0.100 | 0.009 | 0.073 || 0.141
8.500 44.500 29.160 0.154 0.060 | 0.060 | 0.030 | 0.100 | 0.011 | 0.073 0.141
8.500 53.500 23.605 || 0.154 || 0.060 | 0.060 | 0.029 | 0.100 | 0.011 | 0.073 || 0.141
17.500 53.500 24.379 || 0.153 || 0.060 | 0.060 | 0.028 | 0.100 | 0.009 | 0.073 || 0.141
26.500 53.500 25.152 || 0.153 || 0.060 | 0.060 | 0.027 | 0.100 | 0.007 | 0.073 || 0.141
53.500 53.500 27.473 || 0.152 || 0.060 | 0.060 | 0.022 | 0.100 | 0.002 | 0.073 || 0.140
62.500 53.500 28.246 || 0.152 || 0.060 | 0.060 | 0.021 | 0.100 | 0.005 | 0.073 || 0.139
71.500 53.500 29.020 || 0.152 || 0.060 | 0.060 | 0.020 | 0.100 | 0.007 | 0.073 || 0.139
62.500 62.500 30.285 || 0.152 || 0.060 | 0.060 | 0.021 | 0.100 | 0.006 | 0.073 || 0.140
53.500 62.500 28.246 0.152 0.060 | 0.060 | 0.021 | 0.100 | 0.005 | 0.073 0.140
44.500 62.500 26.207 || 0.152 || 0.060 | 0.060 | 0.022 | 0.100 | 0.005 | 0.073 || 0.140
35.500 62.500 24.168 || 0.152 || 0.060 | 0.060 | 0.024 | 0.100 | 0.006 | 0.073 || 0.140
26.500 62.500 22.129 0.153 0.060 | 0.060 | 0.025 | 0.100 | 0.008 | 0.073 0.140
17.500 62.500 20.090 || 0.153 || 0.060 | 0.060 | 0.027 | 0.100 | 0.009 | 0.073 || 0.141
26.500 71.500 19.105 0.153 0.060 | 0.060 | 0.025 | 0.100 | 0.009 | 0.073 0.140
35.500 71.500 22.410 || 0.152 || 0.060 | 0.060 | 0.023 | 0.100 | 0.008 | 0.073 || 0.140
44.500 71.500 25.715 || 0.152 || 0.060 | 0.060 | 0.022 | 0.100 | 0.007 | 0.073 || 0.140
53.500 71.500 29.020 0.152 0.060 | 0.060 | 0.022 | 0.100 | 0.007 | 0.073 0.140

Table 1.20: CMI XENOS data. Selected nominal point coordinates x; in

mm and standard uncertainties u; = u(x

T

i

n;) in pm along with uncertainty

components relating to the various influence factors, based on prior estimates
o of the statistical parameters. The final column is the estimate uncertainty
contribution from all the systematic effects with u? = u%%i + u2E ;-
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[ yi z]Jud)]] R] PQ] S| ET|] ER[] P[] E|
53500  8.500 23.605 [ 0.097 [ 0.050 | 0.000 [ 0.000 | 0.078 [ 0.008 | 0.028 [| 0.084
44500 8.500 29.160 || 0.098 || 0.054 [ 0.000 | 0.000 | 0.079 | 0.008 | 0.023 | 0.082
35500 8.500 34.715 || 0.098 || 0.054 | 0.000 | 0.000 | 0.079 | 0.008 | 0.023 || 0.082
26500 8.500  40.270 [ 0.098 || 0.050 | 0.000 | 0.000 | 0.079 | 0.008 | 0.027 || 0.084
17.500  17.500 41535 || 0.096 | 0.052 | 0.000 | 0.000 | 0.078 | 0.009 | 0.019 | 0.081
26.500 17500 37.246 || 0.098 || 0.057 | 0.000 | 0.000 | 0.077 | 0.008 | 0.019 || 0.080
35500 17.500 32.957 || 0.102 || 0.057 | 0.000 | 0.000 | 0.081 | 0.007 | 0.021 || 0.084
44500 17.500 28.668 || 0.101 || 0.057 | 0.000 | 0.000 | 0.081 | 0.007 | 0.021 | 0.084
53500 17500 24.379 [ 0.097 || 0.057 | 0.000 | 0.000 | 0.077 | 0.007 | 0.020 || 0.079
62.500 17500 20.090 [ 0.096 || 0.052 | 0.000 | 0.000 | 0.077 | 0.007 | 0.021 || 0.080
71500  26.500 19.105 || 0.096 || 0.049 | 0.000 | 0.000 | 0.077 | 0.007 | 0.029 || 0.082
62500 26.500 22.129 [ 0.097 || 0.057 | 0.000 | 0.000 | 0.076 | 0.006 | 0.021 || 0.079
53500  26.500 25.152 || 0.109 || 0.058 | 0.000 | 0.000 | 0.087 [ 0.006 | 0.030 || 0.092
26.500  26.500 34.223 | 0.109 || 0.058 | 0.000 | 0.000 | 0.088 | 0.007 | 0.029 || 0.093
17.500 26500 37.246 | 0.098 || 0.057 | 0.000 | 0.000 | 0.077 | 0.008 | 0.019 || 0.080
8500  26.500 40.270 || 0.098 || 0.050 | 0.000 | 0.000 | 0.079 | 0.008 | 0.027 || 0.084
8500 35.500 34.715 || 0.098 || 0.054 [ 0.000 | 0.000 | 0.079 | 0.008 | 0.023 | 0.082
17.500  35.500 32.957 || 0.102 | 0.057 | 0.000 | 0.000 | 0.081 | 0.007 | 0.021 || 0.084
62.500  35.500 24.168 || 0.101 || 0.057 | 0.000 | 0.000 | 0.080 | 0.005 | 0.024 || 0.083
71500  35.500 22.410 || 0.096 || 0.053 | 0.000 | 0.000 | 0.075 [ 0.006 | 0.024 || 0.079
71500 44500 25.715 || 0.096 || 0.053 | 0.000 | 0.000 | 0.075 | 0.005 | 0.025 || 0.079
62.500  44.500  26.207 || 0.100 || 0.057 | 0.000 | 0.000 | 0.079 | 0.004 | 0.024 || 0.083
17.500  44.500 28.668 || 0.101 | 0.057 | 0.000 | 0.000 | 0.081 | 0.007 | 0.021 || 0.084
8500 44.500  29.160 || 0.098 || 0.054 [ 0.000 | 0.000 | 0.079 | 0.008 | 0.023 | 0.082
8500 53.500  23.605 || 0.097 || 0.050 | 0.000 | 0.000 | 0.078 | 0.008 | 0.028 || 0.084
17.500  53.500 24.379 || 0.097 | 0.057 | 0.000 | 0.000 | 0.077 | 0.007 | 0.020 || 0.079
26.500  53.500 25.152 || 0.109 || 0.058 | 0.000 | 0.000 | 0.087 | 0.006 | 0.030 || 0.092
53500 53.500 27.473 | 0.109 || 0.058 | 0.000 | 0.000 | 0.086 | 0.003 | 0.032 || 0.092
62.500 53.500 28.246 | 0.097 || 0.056 | 0.000 | 0.000 | 0.075 [ 0.004 | 0.022 || 0.078
71500 53.500 29.020 [ 0.095 || 0.049 | 0.000 | 0.000 | 0.076 | 0.005 | 0.030 || 0.082
62.500  62.500 30.285 || 0.095 || 0.052 | 0.000 | 0.000 | 0.076 | 0.005 | 0.023 || 0.079
53.500  62.500 28.246 || 0.097 || 0.056 | 0.000 [ 0.000 | 0.075 | 0.004 | 0.022 || 0.078
44500 62.500  26.207 || 0.100 || 0.057 [ 0.000 | 0.000 | 0.079 | 0.004 | 0.024 | 0.083
35500  62.500 24.168 || 0.101 || 0.057 | 0.000 | 0.000 | 0.080 | 0.005 | 0.024 || 0.083
26500 62.500  22.129 [ 0.097 || 0.057 | 0.000 | 0.000 | 0.076 | 0.006 | 0.021 || 0.079
17.500  62.500 20.090 || 0.096 | 0.052 | 0.000 | 0.000 | 0.077 | 0.007 | 0.021 || 0.080
26.500 71500 19.105 || 0.096 || 0.049 | 0.000 | 0.000 | 0.077 | 0.007 | 0.029 || 0.082
35500 71.500 22.410 || 0.096 || 0.053 | 0.000 | 0.000 | 0.075 [ 0.006 | 0.024 || 0.079
44500 71.500 25.715 || 0.096 || 0.053 | 0.000 | 0.000 | 0.075 | 0.005 | 0.025 | 0.079
53500 71.500 29.020 || 0.095 || 0.049 | 0.000 | 0.000 | 0.076 | 0.005 | 0.030 || 0.082

Table [.21: CMI XENOS data
and standard uncertainties u(d;) associated with fitted residual distances in
pm, along with uncertainty components relating to the various influence
factors, based on prior estimates o of the statistical parameters. The fi-
nal column is the estimate uncertainty contribution from all the systematic
effects with u? = u%{i + UQEl

. Selected nominal point coordinates ; in mm
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e yi z[Jud)] R[] PQ] S] ET[ ER[] P[] E|
53500  8.500 23.605 || 0.041 [ 0.014 [ 0.000 | 0.000 | 0.036 [ 0.004 | 0.013 [[ 0.039
44500 8.500  29.160 || 0.041 || 0.015 [ 0.000 | 0.000 | 0.037 | 0.004 | 0.01L | 0.038
35500 8.500 34.715 || 0.041 || 0.015 | 0.000 | 0.000 | 0.037 | 0.004 | 0.011 || 0.038
26.500  8.500  40.270 || 0.041 || 0.014 | 0.000 | 0.000 | 0.037 [ 0.004 | 0.013 || 0.039
17.500  17.500 41535 || 0.040 | 0.015 | 0.000 | 0.000 | 0.036 | 0.004 | 0.009 || 0.038
26.500 17.500 37.246 || 0.040 || 0.016 | 0.000 | 0.000 | 0.036 | 0.004 | 0.009 || 0.037
35500 17.500 32.957 || 0.042 || 0.016 | 0.000 | 0.000 | 0.038 [ 0.003 | 0.010 || 0.039
44500 17.500 28.668 || 0.042 || 0.016 | 0.000 | 0.000 | 0.037 | 0.003 | 0.010 [ 0.039
53500  17.500 24.379 || 0.040 || 0.016 | 0.000 | 0.000 | 0.036 | 0.003 | 0.009 || 0.037
62,500 17.500  20.090 || 0.040 || 0.015 | 0.000 | 0.000 | 0.036 | 0.003 | 0.010 || 0.037
71.500 26500 19.105 || 0.041 || 0.014 | 0.000 | 0.000 | 0.036 | 0.003 | 0.013 || 0.038
62500 26.500 22.129 || 0.040 || 0.016 | 0.000 | 0.000 | 0.035 | 0.003 | 0.010 || 0.037
53.500  26.500 25.152 || 0.046 || 0.016 | 0.000 | 0.000 | 0.040 | 0.003 | 0.014 || 0.043
26,500 26.500 34.223 || 0.046 || 0.016 | 0.000 | 0.000 | 0.041 | 0.003 | 0.013 || 0.043
17.500  26.500 37.246 || 0.040 | 0.016 | 0.000 | 0.000 | 0.036 | 0.004 | 0.009 || 0.037
8500  26.500 40.270 || 0.041 || 0.014 [ 0.000 | 0.000 | 0.037 | 0.004 [ 0.013 | 0.039
8.500 35.500 34.715 || 0.041 || 0.015 [ 0.000 | 0.000 | 0.037 | 0.004 | 0.011 | 0.038
17.500 35500 32.957 || 0.042 | 0.016 | 0.000 | 0.000 | 0.038 | 0.003 | 0.010 || 0.039
62.500  35.500 24.168 || 0.042 || 0.016 | 0.000 | 0.000 | 0.037 | 0.002 | 0.011 || 0.039
71.500 35500 22.410 || 0.040 || 0.015 | 0.000 | 0.000 | 0.035 | 0.003 | 0.011 || 0.037
71.500 44500 25.715 || 0.040 || 0.015 | 0.000 | 0.000 | 0.035 | 0.002 | 0.011 || 0.037
62.500  44.500 26.207 || 0.042 || 0.016 | 0.000 | 0.000 | 0.037 | 0.002 | 0.011 || 0.038
17.500  44.500 28.668 || 0.042 | 0.016 | 0.000 | 0.000 | 0.037 | 0.003 | 0.010 || 0.039
8500 44.500  29.160 || 0.041 || 0.015 [ 0.000 | 0.000 | 0.037 | 0.004 | 0.01L | 0.038
8500 53.500  23.605 || 0.041 || 0.014 | 0.000 | 0.000 | 0.036 | 0.004 | 0.013 | 0.039
17.500 53500 24.379 || 0.040 | 0.016 | 0.000 | 0.000 | 0.036 | 0.003 | 0.009 || 0.037
26,500  53.500 25.152 || 0.046 || 0.016 | 0.000 | 0.000 | 0.040 | 0.003 | 0.014 || 0.043
53500  53.500 27.473 || 0.046 || 0.016 | 0.000 | 0.000 | 0.040 | 0.001 | 0.015 || 0.043
62500 53.500 28.246 || 0.040 || 0.016 | 0.000 | 0.000 | 0.035 [ 0.002 | 0.010 || 0.036
71.500 53500 29.020 || 0.040 || 0.014 | 0.000 | 0.000 | 0.035 | 0.002 | 0.014 || 0.038
62500 62.500 30.285 || 0.040 || 0.014 | 0.000 | 0.000 | 0.035 | 0.002 | 0.010 || 0.037
53500  62.500 28.246 || 0.040 || 0.016 | 0.000 | 0.000 | 0.035 [ 0.002 | 0.010 || 0.036
44500 62.500  26.207 || 0.042 || 0.016 | 0.000 | 0.000 | 0.037 | 0.002 | 0.01L [ 0.038
35500  62.500 24.168 || 0.042 || 0.016 | 0.000 | 0.000 | 0.037 | 0.002 | 0.011 || 0.039
26500 62.500 22.129 || 0.040 || 0.016 | 0.000 | 0.000 | 0.035 | 0.003 | 0.010 || 0.037
17.500 62500 20.090 || 0.040 [ 0.015 | 0.000 | 0.000 | 0.036 | 0.003 | 0.010 || 0.037
26500 71.500 19.105 || 0.041 || 0.014 | 0.000 | 0.000 | 0.036 | 0.003 | 0.013 || 0.038
35500  71.500 22.410 || 0.040 || 0.015 | 0.000 | 0.000 | 0.035 | 0.003 | 0.011 || 0.037
44500 71.500 25.715 || 0.040 || 0.015 | 0.000 | 0.000 | 0.035 | 0.002 | 0.011 || 0.037
53500 71.500 29.020 || 0.040 || 0.014 | 0.000 | 0.000 | 0.035 | 0.002 | 0.014 || 0.038

Table 1.22: CMI XENOS data
and standard uncertainties u(d;) associated with fitted residual distances in
pm, along with uncertainty components relating to the various influence
factors, based on posterior estimates & of the statistical parameters. The
final column is the estimate uncertainty contribution from all the systematic
effects with u? = “21%71' + u%l

. Selected nominal point coordinates ; in mm

A~
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1.10.3 Connecting rod

The analysis of the connecting rod data follows a similar approach as that
for the hyperboloid, but is much simpler in that it applies features a rather
that residual distances. Here we report on measurement results associated
with the distance dio between the two cylinder axes; see section 1.8.3.

The analysis involves 5 repeated estimates of dyo in four positions. Ta-
ble 1.23 shows the prior estimates of the statistical parameters based on
MPE statements, along with values of parameters based on the measure-
ment data. The spatial correlation lengths were Agr = Agr = 30 mm, and
Ap = 0.3. Also shown in the table the estimate of u(di2|o) based on the
prior estimates of the statistical parameters and that u(d;2|6) based on the
adjusted estimates. The adjusted statistical parameters are on the basis of
measurements of a single parameter in only four positions so that the num-
ber of degrees of freedom associated with the estimate of G¢ is three. If the
prior models reflected the actual behaviour, we would expect &g to lie in
the interval [0.27,1.77] with 95 % probability. The results associated with
laboratory 7 seem anomalous as the standard deviation for all 20 estimates
of dq9 is 60 nm. The values of 6 indicate that the uncertainties based on the
prior estimates of the statistical parameters o are plausible and reasonably
consistent with the measurement data, given that only a limited amount of
information is available for validation.

The estimates of dis in the four positions are not statistically independent.
For example, their correlation for the statistical characterisation of labora-
tory 8 in table 1.23 is given by

1.00 0.15 0.60 0.15
0.15 1.00 0.15 0.15
0.60 0.15 1.00 0.15
0.15 0.15 0.15 1.00

C(di2) =

The correlation is strongest between position 1 and 3, the latter correspond-
ing to rotation about the y-axis, i.e., about the long axis of the connecting
rod. Relatively speaking, position 3 is approximately in the same region of
the CMM as position 1 and the main scale effects are the same.

1.11 Conclusions
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| 1] 2] 3] 4] 5] 6] 7] 8]
A ] 0.300 [ 0.400 | 0.500 | 0.700 | 0.700 | 0.800 | 0.900 | 1.200
B [ 1.000 | 0.900 | 0.500 | 0.600 | 0.400 | 0.400 | 0.400 | 0.770

or || 0.060 | 0.080 | 0.100 | 0.140 | 0.140 | 0.160 | 0.180 | 0.240
os || 0.354 | 0.393 | 0.707 | 0.589 | 0.884 | 0.884 | 0.884 | 0.459
054 || 0.354 | 0.393 | 0.707 | 0.589 | 0.884 | 0.884 | 0.884 | 0.459
og || 0.354 | 0.393 | 0.707 | 0.589 | 0.884 | 0.884 | 0.884 | 0.459
ogr || 0.100 | 0.133 | 0.167 | 0.233 | 0.233 | 0.267 | 0.300 | 0.400
ogr || 1.000 | 1.111 | 2.000 | 1.667 | 2.500 | 2.500 | 2.500 | 1.299
opq || 0.060 | 0.080 | 0.100 | 0.140 | 0.140 | 0.160 | 0.180 | 0.240
op, || 0.042 | 0.057 | 0.071 | 0.099 | 0.099 | 0.113 | 0.127 | 0.170
op || 0.060 | 0.080 | 0.100 | 0.140 | 0.140 | 0.160 | 0.180 | 0.240
or || 0.082 | 0.095 | 0.027 | 0.220 | 0.163 | 0.035 | 0.057 | 0.186
opo || 0.038 | 0.261 | 0.548 | 0.208 | 0.388 | 0.330 | 0.037 | 0.498

u(diz|o) || 0.134 | 0.170 | 0.237 | 0.289 | 0.319 | 0.351 | 0.383 | 0.458
u(diz|ea) || 0.047 | 0.247 | 0.584 | 0.209 | 0.573 | 0.508 | 0.036 | 0.497

| o [ 0.356 | 1.465 | 2.473 | 0.729 | 1.805 | 1.458 | 0.095 | 1.094 |

Table 1.23: Connecting rod. Prior estimates of the statistical parameters
based on MPE statements, along with values of parameters based on the
measurement data. Also shown is the estimate of u(dj2|o) based on the
prior estimates of the statistical parameters and that u(d;2|6") based on the
adjusted estimates. The units for or, ogr, opQ, op,, 0P, OR, OE0, u(di2|0)
and u(di2|6) are pm, those for og, 05,4, 0g and ogr are pm/m and the
unit for og is 1. The CMMs involved are 1 — CMI XENOS, 2 — Tekniker, 3
— MG, 4 — ATH, 5 — Tubitak, 6 - PTB PMM, 7 — Metrosert, 8 — CMI SIP

(probing).
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.1 Point cloud variance decomposition in terms of
position, size and shape

See also [19, 18]. Suppose V' (= V) is a 3m x 3m variance matrix associated
with a set of coordinates x1.,, let J the 3m x 7 matrix constructed from J;
where

1 00 0 —z Yi x4
Ji = 010 Z3 0 —ZTi; Y . (92)
00 1 —y T; 0 =z

Suppose J has QR factorisation J = QR where @ is a 3m x 3m orthogonal
matrix with QTQ = QQ" = I and R is a 3m x 7 upper-triangular matrix
[25]. Partition @ as Q = [Q1 Q2 Q3] where Q) is the submatrix comprised
of columns 1 to 6, QY2 corresponds to column 7 and )3 comprises columns
8 to 3m. Finally, let

Vp=PVP, V;=PJVP, Vs=PRVP,, (93)

where P, = QkQ;. Variance matrices Vp, Vz and Vg represent the variance
components with respect to Position, siZe (or scale) and Shape, respectively.
Similarly, it is possible to isolate the variance components Vpz and Vzg
associated with position and size, and size and shape [19], respectively, with

Vez = PV P, Vzs=PaVPy=(I—-QiQ)V(I-Q1Q])", (94)

where

Py =[Q1 Q2][Q1 Q2]", Pa3 = [Q2 Q3][Q2 Q3"

The matrices P, are projections with P, = PkT, P.P. = P, k =1,2,3.
Since @ is an orthogonal matrix

I=QQ" =[Q1Q2Qs][Q1 Q2 Qs]" = Q1Q{ +Q2Q3 +Q3Q3 = Pi+Po+Ps.

(95)
We can therefore write & = (P, + P2 + P3)x = Q1p + Q2 + @38, where
p=Q{x, \=Qjx and s = Q;:c represent an alternative parametrization
of x in terms of six position parameters p, one size parameter A, and 3m —7
shape parameters s.

A similar decomposition can be undertaken for point clouds in 2 dimensions.
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.1.1 Traces of the variance matrices

Using (95), we can write

V=(Pi+P+P)V(P+P+P) =Vp+Vz+Vs+ Y BVP/.
ki
This means that in general V' # Vp + V; + V. However, we recall that for
matrices for which AB and BA can be formed, trace(AB) = trace(BA), [25],
so that if £ # j then trace(PkVPjT) = trace(PkPjTV) = 0, since PkPjT =0.
Regarding the trace of a variance matrix as an aggregate measure of the
total variance, we have

trace(V) = trace(Vp) + trace(Vz) + trace(Vs) = trace(Vp) + Tr(Vzs),

so that in terms of this aggregate measure, no information is lost in the
decomposition.

.1.2  Consistency of the decomposition

The projections P are determined by x and, applying the process twice, we
have PkPjVP]TP,: = P;CVPkT , if k = j, and is zero otherwise. Thus, Vp has
no component of variance relating to size or shape, Vz has no component of
variance relating to position or shape, etc.

.1.3 Decomposition for specific classes of variance matrix V

If V = 021, then trace(Vp) = 602, trace(Vz) = o2 and trace(Vs) = (3m —
7)a%. For large m, the variance is dominated by the uncertainty in shape;
random, uncorrelated perturbations will have only a small position and size
component.

Suppose &; = R(a)(x; —x0) is a rigid body transformation of a; depending
on three rotation angles o and three translation parameters xy. Assuming

t= [ CZ? ] is associated with variance matrix V%, let G be the 3m x 6 matrix

of partial derivatives of & with respect to t and set V = GVtGT. Then
V' is the variance matrix associated with the 3m x 1 vector & derived by
propagating the variance associated with ¢ through to . Then the variance
decomposition for V has Vp =V and V; = Vg = 0.
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Now suppose V = a%:c:cT so that V' represents a variance matrix consisting

solely in the uncertainty contribution from a scale parameter A. In general
the variance decomposition of V will have a non-zero position component
Vp as well as a non-zero size component Vy; the shape component Vg will
be zero. However, for mean centred data with > x; = > y; = > 2 = 0,
then V; =V and Vp = Vg = 0.

.1.4 Uncertainties associated with distances

If d;j is the distance between @; and x; and g;; the 3m-vector of partial
derivatives of d;; with respect to x, then

u*(dij) = 955V 955 = 94;Vz59:5,  94;Vr9:; = 0;

uncertainty in position does not contribute to uncertainty in distance.

.1.5 Uncertainties associated with angles

If cj is the angle between x; — x; and x; — x}, and Gijk the 3m-vector of
partial derivatives of a;j;, with respect to x, then

2 T T T T T
u”(qije) = 935V ik = 9ijkVs9ijer  9ijkVPYije = 9k V295 = 9ijkVPz9ijk = 0;

uncertainty in angle depends only on the uncertainty in shape.

.2 Temporal correlation associated with system-
atic effects

The models so far have considered systematic effects e; and random effects
€;. The distinction is important in the characterisation of repeated mea-
surements: the systematic effects are considered constant while the random
effects are re-sampled for each repeat measurement. One way to think of
this is that the systematic effects are highly correlated over time while the
random effects are completely independent with respect to time. In practice,
it is more reasonable to regard the systematic effects as changing over time
but do so over much longer timescales than the random effects. A GP model
can be used to model this in which each systematic effect e is associated with
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spatio-temporal coordinates (x,t) and the correlation between effects e and
¢’ depends both on the spatial and temporal separation:

cov(e, ') = k(x, ' )k(t,t)
= opexp{~|z —a'|?/A X }exp{~(t = )*/A7}.  (96)

The temporal correlation can important in uncertainty evaluation in com-
parator mode [20, 29] in which the CMM is used to measure of a calibrated
master artefact and a test artefact nominally of the same geometry using the
same measurement strategy. The test artefact can be calibrated under the
assumption that the systematic effects are constant so that any difference
in the the measurement results for the two artefacts is due to a difference in
geometry and random effects. The temporal correlation model can be used
to account for the fact that the systematic effects may have drifted in time
resulting in a quantifiable increase in the uncertainties associated with the
calibration of the test artefact due to instrument drift.

.2.1 Spatio-temporal correlation for scale and squareness ef-
fects

In section 1.3.5, we considered a simple model for scale and squareness effects
depending on seven parameters b. The model is particularly appropriate for
modelling the measurement of a workpiece at one location in the CMMm
measuring volume. Suppose the same workpiece is measured at a number of
positions in the CMM. Is it plausible that exactly the same squareness and
scale errors apply in each position? Similarly, suppose the same (or similar)
workpiece is measured at a (much) later time. Can we be sure that the
behaviour of the CMM has not drifted in the intervening period? We can
use spatio-temporal correlation concepts to extend the model as follows.

Suppose there are ng sets of measurements X, k =1,...,ng, each associ-
ated with a 7-vector by of scale and squareness errors. The sets of measure-
ments may involve different times or different positions or both. We assume
that the variance matrix associated with each by is the same, denoted by
VB,- We control the degree of correlation between the parameters bi.,,
through an nyx X ng correlation matrix Vp with 0 < Vp(k, ) =ty < 1 and
trry = 1. For example, the correlation matrix could be constructed using
spatio-temporal correlation kernel similar to that in (96). The Tnx X Tng
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variance matrix Vp associated with all the effects by.y, is constructed as!?

t11Ve, t12Ve, -+  tingVB,
to1VB,  t22VB, -+ tonk VB,

Ve = ) )
tnKlng tnKQVBO e tnKnK VBO

Let Gx,|p, be the sensitivity matrix of X with respect to by and Gx|p
the block diagonal matrix with Gx, g, on the kth diagonal block. Then the
variance matrix VX‘ p associated with point coordinates Xj.,, due to the
effects by, is given by

Vxip = GX|BVBG_—|>—{|B-

The matrix Vy g is constructed from nﬁ( blocks

.
teeG x,1B, VB G x, B, -

Similarly, let G4, B, be the sensitivity matrix of parameters ay, derived
from data set Xj, with respect to by and G 4 p the block diagonal matrix
with G 4, on the kth diagonal block. Then the variance matrix Vyp
associated with aj.,, due to the effects by.,, is given by

T
VA|B = GA|BVBGA|B~
The matrix Vy g is constructed from n%( blocks

T

.3 Indefinite integrals

The following integral are relevant to estimating sensitivity matrices asso-
ciated with fitting circles, spheres, cylinders and cones to data according to

2Thus Vg is the tensor product, Vg, ® Vr, of Vg, with Vr.
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the least-squares criterion, section 1.5.2:
/sin@d@ = —cosf + C,
/cos 0df = sin6 + C,
/sin29d9 _ Ly _Llanasc
27 4 ’
) 1, 1
cos*0df = -6 + —sin260 + C,
2 4
1
/sin@cos 0do = —7 °os 20 + C,
/cos3 0df = sin 6 — %sin?’ 6+ C,
/sin3 0do = % cos® 0 — cos0 + C,
1
/sin200089 = gsin39 + C,

1
/sin900529 = —3 cos?0+ C.
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[I-1 Introduction

In coordinate metrology, the elementary components of any measured geometry are features
such as planes and cylinders. These features may be combined to form more complex
measurands. For instance, a geometry consists of a pin nominally normal to a flat, and the
measurand is how far the top of the pin is from the flat. This involves three features: the flat,
and the lateral surface and the top of the pin. The points measured on these features are
associated by best-fitting [1] (3.4.1.4) to as many ideal features, resulting in two planes (the
flat and the pin top) and a cylinder. The measurand is, e.g., the distance to the bottom plane
of the intersection of the cylinder axis with the top plane?.

One of the difficulties in evaluating the uncertainty of such measurements is that there is no
closed form for the association of ideal features to measured points by best-fitting. This
prevents from starting GUM main-stream of operations, the first of which is defining a
measurement model.

To overcome this problem, the approach of the method B2 is based on reducing the number
of points to the essence of the geometry and the measurand. These essential points are not
necessarily taken from those measured (or that will be measured), they are rather fabricated
points representative of the geometry and of the evaluation of the measurand. In the above
example of the pin and the flat, the representative points are three on the flat and one on the
pin top. The measurand is then the distance of the latter to the plane through the former. The
number of essential points is minimum, no approximation occurs, and the measurand can be
expressed in closed form as a function of the essential points. This effectively constitutes the
measurement model and enables to evaluate the uncertainty conventionally according to the
GUM, by derivation of the sensitivity coefficients. The essential points may lay on integral
features (surfaces; the three on the flat in the example) or on derived features (the one on the
pin top, which lays of the cylinder axis). The exact location of the essential points is not
immediately related to the sampling strategy. They are taken where significant for the geometry
and in a reasonable and well-behaved fashion compatible with the nominal sizes and possible
impediments. In the example, the three essential points on the flat will be 120° apart to each
other (symmetrically disposed) at as long a distance to the pin axis as compatible with the pin
and flat sizes. If any impediment prevents from this disposition, then the essential points are
taken differently; for instance, not at 120° if an obstacle is there on one side, or not all at the
same distance to the pin axis is the flat exhibits a high shape factor.

The loose relationship to the actual or planned probing strategy constitutes the main
approximation underpinning method B2. The effect of the point redundancy, or of the exact
location of individual points is not captured and then overlooked. The method overlooks also
that essential points taken on derived features stem from a number of elementary points, as
opposed to those taken on integral features. The challenge of this method is that few
well-selected essential points dominate the geometry and are in fact enough for an
approximated but relatively easy evaluation of the uncertainty.

In any measurement, there is no such measurand as the absolute position or orientation: any
position or orientation is relative other features forming a datum (system). Ultimately, the
fundamental pieces of information derived by measurements are distances between pairs of
features. The measurand in the above example is explicitly a distance, but it could have been
expressed as the position of the pin top when the flat is taken as datum. Distances can be
decomposed to differences of coordinates of individual points. At the end, the measurand can
be expressed as a function of the coordinate differences of the essential points.

The capability of a CMM to measure distances accurately is captured by the length
measurement error, E., a metrological characteristic of the CMMs’ defined in EN ISO 10360 [2]

1 Alternative definitions of the measurand are possible, for example the distance between the
intersections of the cylinder axis with the two planes.
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likely available for most CMMs under metrological confirmation regime. E. (or E. mpe) is used
to derive the input uncertainties in the measurement model.

[I-2 Theoretical background

Details on the assumptions as well as the analysis of some models developed for this approach
(Method B2) was published in [3] and [4]. Their most important characteristics are the following:

- According to the classification of techniques for uncertainty estimation in coordinate
metrology given in CEN ISO/TS 15530-1 [5], the method belongs to the "sensitivity
analysis" category.

- The method is in line with the GUM [6]. A model is developed for individual coordinate
measurements from which the sensitivity coefficients are derived. The input
uncertainties are evaluated and propagated to the combined uncertainty by
multiplication by the sensitivity coefficients.

- The input standard uncertainties are type B evaluated as suggested in EN I1ISO 14253-2
[7] (8.3.2). The largest possible error a is multiplied by a coefficient b that accounts for
the known/assumed probability distribution of the error: u = ab. When the error is
caused by a measuring instruments, [7] (8.4.5) suggests to give a the value of the MPE
(Maximum Permissible Error) assigned to the instrument. In the case of a CMM
measuring point-to-point distances—which is that of interest for the method-the relevant
MPE is E_mpe (EN ISO 10360-2 [2]): a = E.wmee. In the absence of other information,
the probability distribution must be assumed: if uniform, then b = 1/+/3; if normal, b =
1/2 or b = 1/3. When the actual results of the acceptance or reverification test of a
specific CMM are available, then the values a and b can derived based on them instead
of the more generic MPE value and assumption on the distribution. This documents
illustrates this latter case.

- The method proceeds per closed form equations, and is similar in that to cases known
from classical geometrical metrology.

[I-3 Comparison of method B2 with a pure geometrical
approach

Here below is a comparison between the measurement and uncertainty evaluation of the
radius of a circle arc with pure geometry and GUM evaluation and coordinate measurement
and method B2.

Pure geometry and GUM evaluation Coordinate measurement and method B2
.:,':h 3
7
e/2
c
Measured quantities
Sag s and chord ¢ Coordinates of points A,B,C
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R(c,s) = ¢

2
8s

LS
2

_ abc
T 4S8
where

a,b,c are the side lengths;
S is the area of the triangle.

The sides lengths are the Cartesian distance
between vertex pairs:

— 2 2 2
a= Jch + ¥gc t Z5¢

b = \/x(ZZA +yéa + 28y

c= \/foB +Yip + Zip
where, e.g.,

Xxgc = xc—xg IS the difference of the x
coordinates of the vertexes B and C,

and similarly for the others.

The area S is calculated from the geometrical
interpretation of the vector product

IAB x AC||
§=——

Measurement model

R(c,s) =

oolﬁ
n N

+

N ©

R(XAB'YAB:ZAB:XACI;YAC'ZAC:xBCJyBCJZBC) =
abc

T 2M

M= /M,%+M§+MZZ

My = YaB " Zac — ZaB " YAC

where

M, = zpB " Xac — XaAB " ZAcC

M, = XaB " Yac — YaB " XAC

Input quantities for models

Lengths

cand s

Differences of coordinates

XAB» YAB» ZAB» XAC» YAC) ZAC) XBC» YBC» ZBC

Combined standard uncertainty (assuming no correlation)
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where the differences in x,y,z coordinates
are generally designated as x;, the standard
uncertainties of their measurements are
generally designated as uy;

OR _ abeB abc(_MyZAC + MZyAC)

axAB 2cM 2M3
OR _ abyag  abc(Myzac — M, xac)

dyag  2cM 2M3
OR _ abZAB abc(_MxYAC + MyxAc)

0zpg  2cM 2M3

OR _ acxac abC(MyZAB - szAB)

0xac  2bM 2M3
OR  acysc abc(—Myzpp + M, xp)
dyac  2bM 2M3
OR  aczpc abc(Myyap — MyXagp)
07y 2bM 2M3
dR bcxcg
dxcp ~ 2aM
JR bcycg
0ycs B 2aM
OR bczcp
0z¢cp = 2aM

The above equations are in scalar notation
and may appear complicated. They can be
expressed more compactly by using vectorial
notation:

ab ab
VagR = 25 1AB ~ W(AC X m)
ac ab
VacR = 25MAc ~ 5oz (m x AB)
bc
VBcR = 75 mpc
where
V,R = (Z—Z) is the gradient of R with

respect to the vectors of the triangle sides
(v = {AB,AC, BC));

n, are the unit vectors of the
triangle sides (v = {AB, AC, BC});

_ v
lIvll
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_ ABXAC
" |IABXAC||
triangle.

is the unit vector normal to the

The above equations are derived
considering that, in general, the gradient of
the norm of a vector w relative to a vector v
is

T
V‘u”w” = ]w|vnw
where

Jupw = (%) is the Jacobian matrix of w
J

relative to v

_w
liwll

n, is the unit vector of w

Example of numerical calculation
R =50 mm, EL,MPE =2 +0.004 L, b=1/3

Us = EL,MPE/3 = (2 + 0,004‘5)/3
U, = EL,MPE/3 = (2 + 0,004C)/3

uxi = EL,MPE/3 = (2 + 0,004)(,'1)/3

A, B, C taken on a horizontal plane, B, C at the
extremes and A at the midpoint of the arc

Uncertainty budget for s = 8 mm

OR L OR oR
x;/mm o, ”i/“ma_xiui Hm x;/mm Er w /MM F-u/um
s 8.000  -5.25 0.68 -3.56 Xag -27.129 -0.774 0.703 -0.544
c 54.259 1.70 0.75 1.25 VAB -8.00 2.625 0.677 1.778
| ug = 3.77 Zap 0.00 0.000 0.667 0.000
XAC 27.129 0.774 0.703 0.544
Vac -8.00 2.625 0.677 1.778
Zac 0.00 0.000 0.667 0.000
XBC 54.259 0922 0.739 0.681
VBC 0.00 0.000 0.667 0.000
ZBc 0.00 0.000 0.667 0.000
ug =  2.72
Uncertainty budget for s = 25 mm

x;/mm 2_51 ui/umg—iui/um x;/mm g—i u;/Mm g—iui/llm
s 25.000 -1.00 0.70  -0.70 Xag -43.301 -0.289 0.724 -0.209
c 86.603 0.87 0.78 0.68 yag -25.000 0.500 0.700 0.350

| up = 097

Zag  0.000 0.000 0.667 0.000
xac 43301 0289 0724 0.209
yac -25.000 0500 0.700 0.350
Zac  0.000 0.000 0.667 0.000
xgc  86.603 0577 0.782 0.452
ygc  0.000 0.000 0.667 0.000
zgc  0.000 0.000 0.667 0.000

ug = 0.732
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Uncertainty budget for s = 50 mm

Xi/mm aa_::l uilum:_:iui/um xl-/mm g_::l ul/Um g_::iui/um

s 50.000 0 0.73 0 Xag  -50.000 0.0 0.733 0.000

c 100.001 0.5 0.8 0.40 yag  -50.000 0.0 0.733 0.000

| ug = 0.40 ZpB 0.000 0.0 0.667 0.000

xac  50.000 0.0 0733 0.000
yac  -50.000 0.0 0733 0.000
Zac  0.000 0.0 0.667 0.000
xgc 100.000 0.5 0.800 0.400
ygc  0.000 0.0 0.667 0.000
zgc  0.000 0.0 0.667 0.000

Comparison of results

s ————

10 20 30 40 50 &0 70 80 a0 100
S, Mm
|— Sensitivity analysis method — s-c|

Figure 1l-1: Arc of a circle by three points. Comparison of uncertainties with a pure geometry
approach (red) and method B2 (sensitivity analysis, blue).

The method (B2) leads to very similar uncertainties to those obtained with a pure geometry
GUM-compliant analysis, when the assumption of the input uncertainty is the same (based
on the point-to-point MPE).

lI-4 Essential sets of points and their relations

Method B2 treats coordinate measurements as indirect measurements on an essential
(minimal) set of points, with their differences in coordinates taken as input quantities in the
measurement model. It allows to determine the measurement uncertainty of all geometric
characteristics, namely distances, angles, form, orientation, location and run-out deviations [8].

Examples of essential sets of points and the basic equations for the derivation of such
characteristics are given below.

lI-4.1 Angle between planes

The minimum number of points is 6. They are divided in two triples, (A, B, C) and (K, L, M), each
defining a plane.

117 -



EUCoM D2 Report: A Priori (type B) evaluation 11/2021
_—= L

P

Figure II-2: Essential set of points for measuring an angle between planes.

The angle between planes is equal to that between any vectors v and w normal to the planes:

vTw

lwllliwll

The vectors v and w normal to the planes through points A, B, C and K, L, M, respectively, can
be calculated using the geometric interpretation of the vector product as

v = AB X A(C, w = KL X KM

cosa =

[1-4.2 Flatness

Two cases should be considered, one for convex or concave surfaces, and one for twisted
surfaces. In both cases the minimum number of points is 4, but their distributions on the surface
are different.

In the case of convex or concave surfaces, three points A, B, C define a plane and the fourth
point S the peak of the form deviation.

& 1/7]0,05
s 7]
X
A@ ®B

Figure II-3: Essential set of points for measuring flatness for convex or concave surfaces.
The form deviation is calculated as the distance of the central point S to the plane ABC:

|AST(AB x AC)|
1(AS,AB,AC) = JAB X AC]

D

Figure II-4: Essential set of points for measuring flatness for twisted surfaces.
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In the case of twisted surfaces, the points A, B defines the locus of the surface points whose
local normal directions are parallel?. The locus is a line, which is assumed straight so that two
points define it completely. Points C,D are at the extremes of the twisted surface on opposite
sides of the line AB.

The form deviation is calculated as the distance of two straight lines

|ACT(BA x DO)|

I(AC, BA,DC) = TBAXDC

11-4.3 Coaxiality

The minimum number of points is 3. A and B define the datum (axis of the cylinder on the left
hand side in Figure II-5) and S defines the peak deviation of the median line of the cylinder on
the right hand side in Figure II-5 from the datum.

[o] %0,05]D)]
w5 - =

A B
®—®

sk

Figure II-5: Essential set of points for measuring coaxiality.
The coaxiality CX is twice the distance [ of the point S to the axis AB:

||AS x AB]||

CX = 21(AS, AB) = 2
|AB|

lI-4.4 Position of median lines relative to a datum system
constructed from a plane, an axis and a symmetry plane

The primary datum X is a plane, which constrains the spatial orientation and orthogonally the
location. The secondary datum Y is the axis of a cylinder, which constrains the location in the
plane X. The tertiary datum Z is a symmetry plane, which constrains the planar orientation. As
a result, the datum system fully constrains the tolerance zones.

The position of the median lines of three cylinders are toleranced and then are to be measured.
They are the three bores around the workpiece centre (g 12,5, close to points A, B, C).

The minimum number of points is 7. A, B, C define the plane X, D the axis Y, E the plane Z, and
S the peak deviation of the median line of one of the toleranced cylinders. Note that one point
is sufficient for defining the axis Y because its orientation is already defined by the primary
datum. Similarly, one point is sufficient for the symmetry plane Z because it is constrained to
be through the axis VY.

2 If the surface is regarded as a hill, the line is the crest of the hill.
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} K— :
RS

212

....... -+

F[FooXIV]Z N

Figure 1l-6: Essential set of points for measuring the position of the median line relative to a
datum system.

The coordinates of the point S in the plane X are®

gs . (AB X AC) x DE
[I[(AB x AC) x DE||
[(AB x AC) x DE] x (AB x AC)
I[(AB X AC) x DE| X (AB x ACQ)]|

The position of the point S is relative to that of the theoretical exact axis of the toleranced bore.
Because the position tolerance zone is defined by a diameter, the position value, POS, is twice
the offset of S from the axis:

DS

POS = 2||S — Crepll
Where Crgp is the theoretical exact position of the axis. For instance, it is Ctgp, = (45,26) for
the cylinder indicated by the tolerance callout.
[1-4.5 Complete list

13 models and 34 examples of their use have been identified (Table IlI-1).

Table II-1: List of geometrical relations among essential sets of points and examples of their
use

No of

essential SEINTES
points

- distance between sphere centres,
2 - distance between circle centres in
a plane

Distance between two points A and

1l B

8 The coordinate of S along the axis Y is not relevant. Let us consider the 2D projection onto the plane X.
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- straightness of an axis,

- straightness of a generatrix,

- straightness of a line on a plane

- coaxiality of an axis with respect to
a datum axis,

- coaxiality of axes with respect to a

3 common datum axis,

- concentricity

- distance between axes

- position of an axis with respect to a
datum axis

- circular runout,

- total circular runout

Distance of a point S to the straight
line through two points A and B

Distance of a point S to a straight

3 line through a point A, parallel to 4
that through two points A and B
Distance of a point S to a straight

4  line through a point A, normal to a 5
plane through three points B, C, D

- parallelism of axes with cylindrical
tolerance zone

- perpendicularity of an axis with
respect to a datum plane

- flatness of a concave or convex
surfaces
- position of a point with respect to a
4 datum plane
- parallelism of an axis to a datum
plane (nominally lying on the

Distance between of a point S to a
plane through three points A, B, C

plane)

Distance between a point S to a - parallelism of a plane to a datum
6 plane through a point A, parallel to 5 i E!:lrr;ﬁelism of an axis to a datum

that through three points B, C, D plane

- perpendicularity of a plane with

Distance between a point S to a respect to a datum axis,
7 plane through a point A, normal to 4 - perpendicularity of a line with

a straight line through two points B respect to a datum axis,

and C - axial run-out,

- total axial run-out
Distance between a point Sto a
plane through a point A, parallel to
8 a straight line through two points A 6 - in-plane parallelism of axes
and B, and perpendicular to a
plane through three points C, D, E
Distance between a point S to a

plane through two points A and B, - parallelism of a plane with respect

< parallel to a straight line through E to a datum axis
two points C and D
- position of a point with respect to a
secondary datum plane
- position of an axis with respect to a
Distance of a point S to a plane secondary datum in a datum
10 through two points A and B, 6 system
perpendicular to a plane through - position of the median plane with
three points C, D, E respect to secondary datum in a

datum system
- perpendicularity of a plane with
respect to a datum plane
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- position of a point with respect to
the tertiary datum plane, in a
datum system made of three
planes

- position of an axis with respect to
the tertiary datum plane, in a
datum system made of three
planes

- position of a plane with respect to
the tertiary datum plane, in a
datum system made of three

Distance of a point S to a plane
through a point F, orthogonal to a
11 plane through two points D and E, 7
both planes orthogonal to a plane
through three points A, B, C

planes
Distance between two straight
12 lines, each through two points (A, 4 - flatness of a twisted surface
B) and (C, D)
Angle between two planes, each
13 through three points (A, B, C) and 6 - angle between two planes
(D, E, F)

[1-5 Validation of the method B2

Case studies were investigated to validate the method B2. The experimental results gathered
in the measurement campaign for validating the method A were used [9]. The procedure
described in EN ISO/TS 15530-3 [10] based on 20 measurements of artefacts with known
values of characteristics was followed. A deviation from it was due to the impossibility of
correcting the bias.

The considered measurands were:
1. Size.

a. An external diameter was measured with one CMM. The artefact was an 80 mm
diameter cylindrical square.

b. An internal diameter was measured with three CMMs. The artefacts were a
100 mm ring gauge for one CMM and a 45 mm ring gauge for the other two.

2. Size of a partial feature. The internal diameter of an arc of a circle was measured
with three CMMs. The artefacts were a 100 mm ring gauge for one CMM and a 45
mm ring gauge for the other two. Four different arcs were measured.

Coaxiality. A cylindrical square was measured.

Others. In addition, uncertainties were evaluated according to the method B2 for
most characteristics of the artefacts used in the project validation round-robin.

[1-5.1 Procedure

The uncertainty evaluated according to [10] was compared with that evaluated according to
the method B2. A chi-squared test was performed to confirm the null hypothesis of coincidence
of the two methods.

The comparison was carried out in three main steps:
1. Evaluation of the uncertainty according to [10]. In turn, this was divided in two steps:
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a. The mean value y, the bias b and the standard deviation of the measurement
procedure u, were evaluated*.

b. The combined standard (u) and expanded (U) uncertainties were derived. [10]
imposes to correct the bias and then to evaluate the uncertainty as®

U=2[uZ, +uj+uj

!

In this logic, u, is type B evaluated based on thermal effects only. Unfortunately,
the correction of the bias was not possible, and an alternative equation to
propagate the uncertainty was sought. Three were considered:

Uy = 2 [ul, +ud + |bl

cal

;

U, =2 |uZ, + uj + b?

cal

!

U3:2 u

cal

2iz1 (Vi = Xca)?
2 : _ i=1\J1i ca
+uge,  with up —\/ —]

!

U, assigns b a bimodal distribution®. U incorporates the bias into u,, (denoted
as up, to avoid confusion) by calculating the root of the second-order moment

about the known value x.,, rather than the mean value y. It is worth noticing
that the second and third equations yield practically identical results’, U, ~ Us.

These equations are appropriate for errors distributed normally or at least
symmetrically about the =zero. This is a reasonable assumption for
characteristics with nominal value (significantly) different from nought, such as
dimensions and signed distances, whose errors may assume negative as well
as positive values. For those errors assuming non-negative values only, such
as nominally-null unsigned distances—so important in many geometrical
specifications—evaluating the expanded uncertainty U as the 95 % quantile of
the relevant distribution (F~1(0.95) where F is the cumulative distribution
function) seems more appropriate. A strong candidate distribution is the
Rayleigh distribution®, which characterises the norm of a 2D vector with
independent equally-varied normally-distributed components. This results in a
fourth option:

4 The mean value is that of the 20 measurements gathered during the procedure, y = ﬁZ?zlyi. The

bias is the deviation of the mean value from the known value, b = ¥ — x4 u, is the standard deviation

of the 20 measurements gathered during the procedure, u, = \/ﬁZ?:l(Yz —y)2.

5 The component u,, due to the workpiece is disregarded because the method B2 does not cover these
effects.

6 A bimodal distribution with two possible discrete values, +b, with equal probability %2 has variance
o? = b%. This may be considered to match the case of uncorrected bias: the amount of bias |b| is
known and we pretend not to know the sign to justify the lack of correction.

7 - - _y, =_L.0P
The difference between the two is U; — U, = =

when the bias is not dominant.

8 The Weibull distribution was used instead in the following analysis for practical reasons. The results
are similar.

with U = % This is negligible for large n and
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F~1(0.95)\°
e

The uncertainty was evaluated with the method B2.

Chi-square analysis was performed to test for equality the uncertainties estimated
by method B2 and experimentally. The chi-squared variable was evaluated as
2
no
2
X 002

where ¢ and g, are the standard uncertainties evaluated experimentally and with
the Method B2, respectively, and n is the sample size (20). The critical values
X241, x4, used as thresholds in the testing are the 2.5 % and 97.5 % quantiles,
respectively, for a chi-squared distribution with 19 degrees of freedom. The test
main characteristics are summarised in Table II-2.

The chi-squared values obtained in the analysis will be reported with a colour code
(Table 11-3).

Table 1lI-2: Comparison of the uncertainties evaluated experimentally and with
method B2: hypotheses and critical values for the chi-squared tests. ¢ and o, are
the standard uncertainties evaluated experimentally and with the Method B2,
respectively.

Null Alternative

Test hypothesis, | hypothesis, Null hypothesis criterion
H,

Yo < x? < x&,
Two-tailed g2 = O'g o2 + O'(? Xgrl(oozs' 19) =8.907
x2,(0.975,19) = 32.852

Table II-3: Colour-code for the results of the chi-squared analysis.

Colour Criterion Method B2 likely ...
X2 < xi, ... overestimates the uncertainty
Xe1 < x? < x4, ... properly estimates the uncertainty
- x% > xt, ... underestimates the uncertainty
[1-5.2 Coaxiality

11-5.2.1 Validation plan

A 80 mm diameter cylinder square (Figure 1I-7) was used for testing the method B2 on two
characteristics: coaxiality and diameter. This section reports the outcomes for coaxiality; see
the next section for the diameter.
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Figure II-7: The cylinder square used for the testing.

The measurements were carried out with a CMM Aberlink - Zenith Too with PH10T probing
system with specification E_mpe = (4 + 6L) um, and Aberlink 3D software. Measurements
were repeated 20 times at long time intervals as recommended in .

The cylinder was measured as a sequence of 17 circles. They were as many right sections at
intervals of 5 mm along the cylinder length, thus covering 80 mm of length.

To investigate the effect on the coaxiality of the distance of specific sections to the datum
feature and of the datum feature extension, the datum feature A was taken on the leftmost
portion of the cylinder with increasing lengths (Figure [1-8a). Six datums were established with
datum feature lengths of (10, 15, 20, 25, 30, 35) mm, respectively. A seventh datum was taken
as a common datum A-B based on the two sections at the extremes (Figure 11-8b). The
coaxiality was evaluated at individual sections. Only the sections on the right hand side of the
datum feature at increasing distances to it were evaluated for the case in Figure 1l-8a. All
sections but the extreme two were evaluated for the common datum case in Figure 11-8b.

a)

b) (4] A-B (B]

Figure I1-8: Drawing of the cylinder with the indication of the datum and datum feature(s), and
of a right section under coaxiality investigation. a) with a single datum; b) with a common
datum.

The coaxiality known by calibration value was nought (nearly-perfect cylinder).

The experimental uncertainty U was evaluated [10] for each right section with the three
equations Uy, U,, U,. U; was disregarded because of its similarity to U,. The uncertainty was
evaluated according to method B2 too with two values of the b coefficient to derive the standard

uncertainty from the maximum error expressed by the MPE. They were b; = % ~ 0.577 in the

assumption of a uniform distribution and b, = 0.459 derived from the actual errors of indication
incurred during a previous EN ISO 10360-2 test®.

® The EN ISO 10360-2 test was not part of the current validation. The data used for evaluating b, had
been stored during the test and retrieved and evaluated for the purpose.
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The chi-square of the experimental uncertainty U, (quantile-based approach) with a Weibull
distribution® versus the method B uncertainty was calculated. U, only was used in the
chi-square analysis as deemed as the most suited: coaxiality (and any other geometrical
deviation) always hold positive values. Figure II-9 illustrates an example of the experimental
distribution of the expanded uncertainty values U,.

2

A

Figure 1I-9: Exemplar log-log plot of the distribution of uncertainties evaluated as 95 %
guantiles of a Weibull distribution. The horizontal x axis is the logarithm of the measured values

of coaxiality, €, in micrometres, x = In ﬁ The vertical y axis is y = In{—In[1 — F(¢)]}, where

F is the cumulative Weibull distribution. The function y would exhibit a linear behaviour in case
of perfectly Weibull-distributed data.

The evaluation was carried out by means of a MS Excel spreadsheet (cylindrical square.xIsx).
Inputs to it were:

- Date and time of measurements;
- Values of the coefficients A and B in the expression of E vpe;

- Values of the coefficients b, and b, to derive the standard uncertainty from the CMM
MPE;

- Calibration standard uncertainty u., of the axis straightness of the cylindrical square;

- Value D and Standard uncertainty u.,;(D) of the diameter of the cylindrical square;

11-5.2.2 Summary of the validation plan

The validation plan for the coaxiality is summarised in Table 11-4.

10 Similar results would have been achieved with a Rayleigh distribution.
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Table lI-4: Summary of the validation plan for coaxiality.

Symbol Dimension Values Description
Length of the datum (A)
la feature (leftmost cylinder (1&)13%)2 ?nr7215
portion) ’

I Distance between the two 80 mm
A-B ' common datum (A-B) features

Values for the shortest datum
(5, 10, 15, 20, (A) feature (I = 10 mm). For
Closest distance of a sections | 25, 30, 35, 40, longer datum features, the

2 to the datum (A) feature 45, 50, 55, 60, number of evaluated sections
65, 70) mm reduces (to fall within the
total cylinder length)
(5, 10, 15, 20,
h Longitudinal coordinate of a 25, 30, 35, 40, Used only in the case of the
section 45, 50, 55, 60,  common datum A-B
65, 70, 75) mm

y | Bl s el e U,U, U,  Seell-5.1bullet1.b
experimental uncertainty

1

Coefficient to derive the b, = — (b,) Uniform distribution
b method B2 standard V3 _
uncertainty from the maximum ~ 0.577 (b,) Derived from
error MPE b, = 0.459 EN ISO 10360-2 testing data

The chi-squared analysis was performed for U = U, only.

11-5.2.3 Results
This section reports the many results obtained in the validation plan.

For each length of the datum feature, [, and for the common datum A-B, a synoptic table with
the expanded uncertainties evaluated either experimentally or with the method B2 and its plot
are reported.
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Table II-5: Comparison of uncertainties. Length of the datum feature [, = 10 mm.

Usfum (b1U 2269?77) (bZU 226‘.‘2“59)
5 8.71 9.62 7.92 10.328 8.211
10 10.71 11.32 11.37 13.064 10.386
15 11.16 13.04 9.98 16.653 13.240
20 15.59 17.81 14.30 20.656 16.422
25 15.60 18.26 14.38 24.873 19.774
30 22.20 25.54 20.37 29.212 23.224
35 24.07 28.74 22.00 33.625 26.733
40 26.48 30.34 24.44 38.088 30.280
45 25.82 3157 23.71 42.583 33.854
50 30.60 36.60 28.09 47.103 37.447
55 32.58 39.72 30.25 51.640 41.054
60 33.45 40.30 30.78 56.190 44.672
65 37.20 45.52 34.21 60.751 48.298
70 37.95 45.73 35.04 65.320 51.930

coaxiality, datum 10 mm

70

60

50

40

30

20

10

0 10 20 30 40 50 60 70 80

o U ° U, o U, Ug,(b = 0.58)

Ug, (b = 0.459)

Figure 11-10: Plot of the values in Table 1I-5 (I, = 10 mm). The horizontal axis is the distance
of the right section to the datum feature, d (millimetres). The vertical axis is the expanded
uncertainty (micrometres).
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Table II-6: Comparison of uncertainties. Length of the datum feature, [, = 15 mm.

Usfum (b1U ZZ{)H???) (bZU 22892“59)
5 8.72 9.02 8.07 9.737 7.741
10 10.00 10.24 9.32 11.102 8.826
15 10.91 12.17 10.07 13.064 10.386
20 13.52 14.09 12.78 15.396 12.240
25 19.33 20.64 18.07 17.955 14.274
30 21.39 23.85 20.09 20.656 16.422
35 7 55 24.21 20.98 23.450 18.643
40 21.43 24.77 19.96 26.309 20.916
45 Salo6 26.82 21.74 29.212 23.224
50 25,37 29.60 23.63 32.148 25558
55 25.71 30.64 24.31 35.108 27.911
60 28.45 34.55 26.83 38.088 30.280
65 28.42 34.47 26.52 41.082 32.660

coaxiality, datum 15 mm

0 10 20 30 40 50 60 70

o U, o U, o U, Ug, (b = 0.58) Ug, (b = 0.459)

Figure 11-11: Plot of the values in Table 11-6 (I, = 15 mm). The horizontal axis is the distance
of the right section to the datum feature, d (millimetres). The vertical axis is the expanded
uncertainty (micrometres).
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Table II-7: Comparison of uncertainties. Length of the datum feature, [, = 20 mm.

Usfum (b1U ZZ{)H???) (bZU 226*.‘2“59)
5 7.13 7.49 6.48 9.52 7.57
10 7.73 8.69 6.98 10.33 8.21
15 9.17 9.68 8.43 11.55 0.18
20 14.71 15.60 13.88 13.06 10.39
25 18.76 19.27 17.79 14.79 11.76
30 17.03 17.73 15.96 16.65 13.24
35 15.97 17.08 14.93 18.62 14.80
40 19.20 20.42 21.43 20.66 16.42
45 18.90 21.27 17.42 22.74 18.08
50 19.51 21.72 18.20 24.87 19.77
55 99.12 25.00 20.41 27.03 21.49
60 21.67 23.76 20.23 29.21 23.22

35

30

25

20

15

10

10

° U,

coaxiality, datum 20 mm

20

o U,

30 40

Ug, (b = 0.58)

50 60

U, (b = 0.459)

70

Figure 11-12: Plot of the values in Table 1I-7 (I, = 20 mm). The horizontal axis is the distance
of the right section to the datum feature, d (millimetres). The vertical axis is the expanded
uncertainty (micrometres).
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Table II-8: Comparison of uncertainties. Length of the datum feature, [, = 25 mm.

Usfum (b1U ZZ{)H???) (bZU 226*.‘2“59)
5 8.76 9.20 8.20 9.42 7.49
10 8.84 9.73 8.04 9.95 7.91
15 12.82 13.66 12.07 10.77 8.56
20 14.85 16.50 13.78 11.83 9.40
25 14.35 15.79 13.28 13.06 10.39
30 13.73 14.70 13.30 14.43 11.47
35 15.20 17.82 13.94 15.89 12.64
40 18.27 20.14 16.97 17.43 13.86
45 16.89 19.63 15.41 19.02 15.12
50 18.68 22.79 16.89 20.66 16.42
55 17.81 21.17 16.27 59'37 17.75

coaxiality, datum 25 mm

25

20

15

10

0 10 20 30 40 50 60

o U o U, o U, Ug,(b = 0.58) Ug, (b = 0.459)

Figure 11-13: Plot of the values in Table 1I-8 (I, = 25 mm). The horizontal axis is the distance
of the right section to the datum feature, d (millimetres). The vertical axis is the expanded
uncertainty (micrometres).
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Table 11-9: Comparison of uncertainties. Length of the datum feature, [, = 30 mm.

Usfum (b1U ZZ{)H???) (bZU 226*.‘2“59)
5 7.73 8.09 7.19 9.37 7.45
10 13.05 13.03 12.83 9.74 7.74
15 13.03 13.39 12.06 10.33 8.21
20 12.13 12,53 11.21 11.10 8.83
25 12.36 13.00 11.54 12.02 9.56
30 12.90 13.52 14.01 13.06 10.39
35 15.90 16.06 14.77 14.19 11.28
40 12.50 13.36 11.60 15.40 12.24
45 14.31 14.79 13,51 16.65 13.24
50 14.47 15.44 13.46 17.95 14.27

coaxiality, datum 30 mm

20
18
16
14
12
10

o N B OO

0 10 20 20 40 50 60

LA e U, o U, Ug,(b = 0.58)

Ug, (b = 0.459)

Figure 11-14: Plot of the values in Table 1I-9 (I, = 30 mm). The horizontal axis is the distance
of the right section to the datum feature, d (millimetres). The vertical axis is the expanded
uncertainty (micrometres).
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Table II-10: Comparison of uncertainties. Length of the datum feature, [, = 35 mm.

Usfum (b1U ZZ{)H???) (bZU 226*.‘2“59)
5 12.77 13.73 11.84 9.33 7.42
10 15.00 14.92 13.92 9.61 7.64
15 13.65 13.46 12.67 10.05 7.99
20 11.73 12.93 10.87 10.64 8.46
25 14.37 15.16 13.60 11.35 9.03
30 14.94 16.14 13.96 12.17 9.67
35 14.20 14.78 13.39 13.06 10.39
40 16.00 17.09 14.89 14.03 11.15
45 14.78 15.05 14.08 15.05 11.96

coaxiality, datum 35 mm

18

°
16 py . ® °
° °
14 ® ° ® $ ® ! i
[ J o [ J
12 ° °
e
10
8
6
4
2
0
0 10 20 20 an 50

o U e U, o U, Ug,(b = 0.58)

Ug, (b = 0.459)

Figure II-15: Plot of the values in Table 11-10 (I, = 35 mm). The horizontal axis is the distance
of the right section to the datum feature, d (millimetres). The vertical axis is the expanded
uncertainty (micrometres).
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Table II-11: Comparison of uncertainties. Common datum A-B, [,_g = 80 mm.

m m
Usfum (b1U 1289577) (b2U 226H459)
5 8.06 7.93 8.30 9.26 7.36
10 5.53 6.05 4.80 9.31 7.40
15 6.05 6.75 5.34 9.40 7.47
20 6.02 6.25 5.42 9.52 7.57
25 6.20 6.88 5.43 9.68 7.69
30 5.96 6.08 5.39 9.87 7.84
35 6.87 6.83 6.41 10.08 8.02
40 11.28 11.42 10.51 10.33 8.21
45 11.79 11.37 10.86 10.08 8.02
50 10.45 9.80 9.55 9.87 7.84
55 8.06 8.59 7.39 9.68 7.69
60 8.92 9.50 8.17 9.52 7.57
65 8.35 8.82 7.73 9.40 7.47
70 7.00 7.24 6.35 9.31 7.40
75 6.62 7.11 5.94 9.26 7.36

coaxiality, datum 80 mm,
element between datums

14

12 P )
10 e L

50 \QA'_'

6 g ¢ ¢ 8 o 8

4

2

0

0 10 20 30 40 50 60 70 80
e U; ° U, U, Ug, (b = 0.58) Ug, (b = 0.459)

Figure 1I-16: Plot of the values in Table 1I-11 (I,_g = 80 mm). The horizontal axis is the
longitudinal coordinate of the right section, h (millimetres). The vertical axis is the expanded
uncertainty (micrometres).

The results show a strong dependence of the uncertainty on the datum feature length and on
the distance of the section to the datum element. They also show a good compatibility of the
proposed method B2 with the established experimental method [10].

The plots above use different scale magnifications. To help comparing, Figure 11-17 merges
them to one chart (for the case only of the method B2 uncertainty with b; = 0.58.
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U1(b=0,58)

0 10 20 30 40 50 60 70 80

Figure II-17: Summary of the uncertainty evaluated with the method B2 in the case of a uniform
distribution (b, = 0.58). Each curve illustrates a different datum feature length: the uppermost
curve (in blue) is evaluated with [, = 10 mm, the others below with progressively longer lengths
up to I, = 35 mm for the bottommost but one (in green). The bottommost in dark blue is with
the common datum A-B. The horizontal axis is the distance of the section to the datum feature,
d (millimetres), but for the bottommost curve is the longitudinal coordinate of the right section,
h (millimetres). The vertical axis is the expanded uncertainty (micrometres).

[1-5.3 Diameter of an external circle

11-5.3.1 Validation plan

The same cylindrical square used for validating the coaxiality (see II-5.2) was used for
validating the external diameter too.

The validation plan was the same as described in 11-5.1 for the coaxiality but adapted as
follows:

e No datum was involved because the diameter is a feature of size;

e The measurements of all the 17 right sections of the cylinder were individually
considered and their diameters were evaluated;

e The experimental uncertainty U, was not evaluated. The measurement errors of a
dimeter (characteristic of size) can be either positive or negative, and the approach
based on the quantile of a one-sided distribution was not fit for purpose.

[1-5.4 Results

The uncertainties evaluated experimentally (either U; or U,) and with the method B2 (with
either the value b; = 0.577 or b, = 0.459 of the coefficient b) are reported in Table 11-12.
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The chi-squared analysis of the experimental uncertainty U; and U, versus the uncertainty
evaluated with method B2 (with either b; or b,) is reported in Table 11-13.

Table 1I-12: External diameter. Synopsis of the uncertainties evaluated for the chi-squared
analysis.

Uncertainties/um

Experimental U; - (6.30 — 8.54) U, - (6.07 — 7.68)

Method B2 b, — 7.49 b, - 5.95

Table 1I-13: External diameter. Chi-squared analysis of the experimental uncertainty U, and
U; versus the method B2 uncertainty (with either b; for a uniform distribution or the
CMM-specific b,). The values of y? are colour-coded (Table II-3).

BiaS 2 2 2 2
dimm e Uplm Uim X o 2oae) UMM Xose) o, 2 0.46)
0 069 280 678 | 1643 2600 625 1394 22.05
5 127 297 767 | 2102 [NSSESNN 639  16.94 26.80
10 022 328 722 | 1858 2940 700 | 1752 27.71
15 056 312 725 | 1876 2968 678 1642 25.98
20 052 310 7.8 | 1839 2909 674 | 1621 25.64
25 071 290 698 | 17.39 2751 643 | 1475 23.34
30 025 284 642 | 1472 2329 619 | 1367 21.63
35 018 281 630 | 1415 2239 613 | 1340 21.20
40 010 331 7.3 | 18.14 2870 704 | 1767 27.96
45 045 299 659 | 1550 2453 645 | 1486 23.51
50 044 275 644 | 1481 2344 607 | 1313 20.78
55 022 324 713 | 1814 2871 692 | 17.09 27.04
60 -055 326 7.49 | 20.00 3165  7.03 | 17.62 27.88
65 -090 292 722 | 1862 2945 657 1542 24.40
70 -157 284 774 | 2137 6.92 | 17.09 27.05
75 -137 338 854 | 26.05 768 | 2105 |SSSINN
80 -147 301 795 | 2256 711 | 18.07 28.59

The test chi-squared test was always passed with either experimental uncertainty U;, U, in the
(2 x 17) cases with uniform distribution assumption (b,). It was too in 13 (U,) and 16 (U,) out
of 17 cases based actual reverification test results (b,). This is considered a satisfactory result,
particularly in the case of U,, likely more reliable than U, .

[1-5.5 Diameter of an internal circle

[I-5.5.1 Validation plan

Two ring gauges (100 mm and 45 mm in diameter) were measured with three different CMMs,
according to the experimental plan in Table 11-14.
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Table II-14: Experimental plan for the validation of the diameter of an internal circle.

EL mpe/pm Ring gauge 1 Ring gauge 2
(L in millimetres) (g 100 mm) (2 45 mm)
1 1.8 + L/300 v
2 1.5+ L/333 v
3 1.8 +L/333 v
1I-5.5.2 Results

Details of the uncertainty evaluation are reported in Table II-15. The uncertainties were
evaluated experimentally with either U; or U, and with the method B2 with either the value b; =
0.577 (uniform distribution) or b, (for the specific CMM) of the coefficient b.

The chi-squared analysis is summarised in Table 11-16. Values are colour-coded, see Table
I1-3.

Table 1I-15: Internal diameter. Details of the uncertainty evaluations: experimentally (with
either U; or U,) and with the method B2 (with either b, for a uniform distribution or b, for the
specific CMM).

. : Ug> Ug2

Ring Yl  Bias U U, e

(by)  (b2)

1 100 0.5 0.29 0.17 0577 0.228 1.35 1.21 3.52 1.39
2 45 0.7 0.05 056 0577 0249 1.84 1.80 2.75 1.19
3 45 0.7 -0.18 0.63 0.577 0.232 2.05 1.91 3.27 1.31

Table II-16: Internal diameter. Chi-squared analysis of the experimental uncertainty U, and U,

versus the method B2 uncertainty (with either b; for a uniform distribution or b, for the specific
CMM).

U, U,
CMM  4f X5 Xz X5
(b1) (by) (b1) (by)

1 2.96 18.93 2.37 15.17
2 894
3 7.90

The large discrepancy between the two uncertainties with method B2 is due to the coefficient
b, less than a half of b;. This occurred because the CMMs were in very good technical

condition and performed in the EN ISO 10360-2 verification tests much better than their MPEs
(Figure 11-18).
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Figure 11-18: Diagram of the errors of indication incurred in the EN ISO 10360-2 verification
test of the CMM 1. The external red lines are the MPE. The internal blue lines symmetrically
encompass 95 % of the errors and were used for the derivation of the coefficient b,.

For the CMM 1, the method B2 uncertainties were compatible with the experimental ones, with
some overestimation versus U; .

For the CMMs 2 and 3, the order relationship Ug,;, < U, < U; < Ug; ), could be observed.

The method B2 uncertainties generally either overestimated (while using the MPE values, b,)
or underestimated (while using the actual test values, b;) the uncertainty evaluated
experimentally [10].

It is worth noticing that the value of u., was rather large and accounted for a large fraction
(>50 %) of the uncertainty evaluated experimentally.

II-5.6 Diameter of the arc of a circle

Two validation exercises were carried out: on single arcs and on the average of multiple arcs
rotated all along the circle.

11-5.6.1 Validation plan (single arcs)

The same ring gauges were measured with the same CMMs as for the validation of the internal
diameter (Table 11-14). Arcs with different central angles 26 were measured.

[1-5.6.2 Results (single arcs)

The results (both the uncertainties and the chi-squared values) are reported in Table 11-17,
Table 11-18 and Table II-19 for the three CMMs.
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Table 1I-17: Arc of a circle. Details of the experimental (with either U; or U,) and the method B2
(with either b, for a uniform distribution or b, for the specific CMM) uncertainties, and
chi-squared analysis. 6 is half the central angle. Case of the CMM 1 and the 100 mm ring

gauge.

CMM 1: EL,MPE = (18 + L/300) pm

100 mm ring gauge; u., = 0.5 um

Half U U Uy U,
. U U B2 B2
;ﬁg}; b?rlﬁrsn up/m /urln /urzn fum - fum 2 x5 xi x5

9 (by) (b)) (b)) (b)) (b)) (b))
17° 537 164 879 1126 6577 2599 | 0.36 229 059 3.76
25° 302 0.89 505 6.37 2989 11.81 | 057 366 0.91 581
40° 020 043 152 138 1112 439 | 037 240 031 197
90° 025 021 133 119 246 097 | 584

Table 11-18: Arc of a circle. Details of the experimental (with either U; or U,) and the method B2
(with either b; for a uniform distribution or b, for the specific CMM) uncertainties, and
chi-squared analysis. 6 is half the central angle. Case of the CMM 2 and the 45 mm ring gauge.

CMM 2: E_ype = (1.5 + L/333) pm

45 mm ring gauge; ucy = 0.7 um

Half U U U, U,
. U U B2 B2
;:re]glt;, 15:?; up/pm /urln /urzn i fum xi X3 X xX;
0 (by) (by) (b1) (b) (b1) (bs)

17° 229 189 631 6.09 5466 2355 027 143 025 1.34
25°  -160 160 509 473 2476 1067 084 455 0.73 3.93
40° -0.84 126 371 333 910 392 | 333 17.93 267 14.40
90° -059 046 226 2.04 1.89 0.81 | 2852

Table 11-19: Arc of a circle. Details of the experimental (with either U, or U,) and the method B2
(with either b; for a uniform distribution or b, for the specific CMM) uncertainties, and
chi-squared analysis. 6 is half the central angle. Case of the CMM 3 and the 45 mm ring gauge.

CMM 3: ELype = (1.8 + L/333) pm

45 mm ring gauge; ucy = 0.7 um

Half U U U U,
. U U B2 B2
§§3fé b?:r?rs; wpm  ym om MM Mo 2 2 2 g

) (b)) (b () (b)) (b)) (b2)
17° 170 133 4.69 453 6557 26.32 010 0.64 0.0 0.59
25° 050 125 336 303 2968 1192 | 026 159 021 1.29
40° 017 103 266 251 10.89 437 | 119 739 106 6.59
90° 0.31 061 217 196 223 0.90 | 18.86 SN 15.42 DOAGN

The method B2 generally overestimated the uncertainty, particularly at small central angles. In
the case of the semicircle (8 = 90°), the use of the validation-based coefficient b, led to a
severe overestimation.
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I1-5.6.3 Validation plan (average of multiple arcs)

The ring gauge 100 mm was measured with a CMM with MPE E_ wpe = £(1.8 + L/333) um (L
in millimetres).

Eleven evenly spaced points where probed (A8 = % ~ 32.7° angular separation). Sets of

three points were extracted out of the eleven and the diameter of the circle through them was
evaluated. The selection of the three points followed a scheme aimed at investigating the effect
of the central angle size with the impact of local form errors minimised by averaging (see Figure
[1-19). More precisely:

1. Increasing central angles 26, = kA6 were considered. The minimum and maximum
values of k were selected to have at least three sampled points onto the subtending
arc with non-coincident extreme points, that is, k € [2,10]. In fact, k = 1 would have
resulted in two points only, k = 11 in coincident extreme points. The corresponding 9
values of half central angles were 6, = (32.7°, 49.1°, 65.5°, 81.8°, 98.2°, 114.5°,
130.9°, 147.3°, 163.6°).

2. For each central angle 26, a set of three points was taken at the extremes and at the
middle point of the subtending arc, the first point of the three being 1. This corresponded
to the points {1,§+ 1,k + 1} 11 For instance {1, 2, 3} for k =2 (Figure 11-19a), or
{1, 2, 4} for k = 3, or {1, 6, 11} for k = 11 (Figure 1I-19b).

3. Each set is progressively rotated about the centre in steps of Aé, resulting in 11 sets
(j € [1,11]) for each central angle (k € [2,10]). The points in the sets resulted to be
{j, (§+j),(k + ) } with point indexes “wrapping around”!? at the value of 12. The
sequence resulted in

j=1 j=2 - j=11
k=2 {1,2,3} {234} - {11, 1,2}
k=3 {1,2,4} {235 - {11,1,3}
k=10 (1,6, 11} {2,7,1} - ({11, 5, 10}

4. The 11 diameters computed for each central angle size were averaged to obtain @,,.

11 This is valid when k is even. When it is odd instead, the nearby point % + 1 rather than §+ 1is
chosen as middle point point, resulting in {1% +1,k+ 1}

12 Indexes “wrap around” because of the point layout closed in a circle. The complete expression is
{j, [(S +j- 1) mod 11] +1,[(k+j—1)mod11] + 1} for even values of k

{,|(52+j-1) mod 11] + L,[(k +j - ) mod 11] + 1} for odd values of k.
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a)

Figure 11-19: Sampling of a circle used for the validation for arcs of circles. Examples of sets
of extracted three points. Central angles 26: a) 6§ = 32.7°, b) 6 = 163.6°.

Each experiment was repeated 20 times with measurements taken at long time intervals [10].

II-5.6.4 Results (average of multiple arcs)
Figure 11-20 plots the evaluated uncertainties as a function of half the central angle 6.

10

uncertainty, um
(V5] = Ll (=)} ~J oo [X=]

32 42 52 62 72 82 92 102 112 122 132 142 152 162

central angle, degrees

Figure 1I-20: Expanded measurement uncertainties of the diameter of a circle arc. The
horizontal axis is half the central angle 6 (degrees). The vertical axis is the evaluated expanded
uncertainty (micrometres). Dots are the uncertainty evaluated experimentally [10]. Solid lines
are uncertainties evaluated with the method B2: with b; = 0.577 for a uniform distribution
(grey) and with b, = 0.313 based on actual CMM verification data.

A clear overestimation of method B2 uncertainty is observable for small central angles 26.

[I-5.7 Inter-method comparison

11-5.7.1 Validation plan

The method B2 evaluations were compared with those with the method A also developed in
the EUCoM project [11].
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Three artefacts were investigated, namely an industrial connecting rod and two MFC standards
(Multi-Feature Check) of high and low quality, respectively (Figure 1l-21). Details of these
artefacts are given in [12].

Figure 11-21: Artefacts used for the inter-method comparison. An industrial connecting rod (top)
and two MTC standards (Multi-feature Checks, bottom; one only is illustrated).

11-5.7.2 Connecting rod

Many characteristics could be defined in the geometry of a connecting rod. Six only were
selected to keep the analysis effort viable.

To define the characteristics (measurands), a primary datum was established on the upper
planar face of the big eye. This datum was parallel-shifted into the connecting rod to its nominal
symmetry plane. Its intersections with the big and small eyes were nominally two circles (C3
and C4). The selected characteristics are reported in Table [I-20.
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Table 11-20: Inter-method comparison — connecting rod. Definition of the measurands.

Symbol Description More precisely ...
Dcs Diameter of the big eye Diameter of C3
Dca Diameter of the small eye Diameter of C4

dss Separation of the axes of the two eyes giparatlon B i GAMIES eI E8 B8

PBs Parallelism of the axes of the two eyes

_ . : Diameter of the cylinder associated to
DBig Diameter of the big eye the big eye
Diameter of the cylinder associated to

Osman  Diameter of the small eye the small eye

The expanded uncertainties evaluated with the methods A and B2 were compared. The latter
was evaluated with b; = 0.577 for a uniform distribution and b, based on actual CMM
verification data [2]. Usually b, < b4, as all the involved CMMs were well-behaved.

The connecting rod was measured with 10 different CMMs. To keep the effort viable, the
chi-squared analysis was carried out only for the four highest-accuracy CMMs.

The evaluation with the method A was based on four repeats of measurements of the
connecting rod each in four orientations, resulting in 16 sets of data overall. Hence, the degrees
of freedom were 15 in the chi-squared analysis (Table II-21).

Table 1I-21: Inter-method comparison — connecting rod. Critical values for the chi-squared
analysis.

Null hypothesis criterion Thresholds

X2 < x? < x&, x21(0.025,15) = 6.262  x%,(0.975,15) = 27.488

The resulting uncertainties and chi-squared analysis are reported in Table 11-22 and Table
11-23, respectively.
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Table 11-22: Inter-method comparison — connecting rod. Uncertainties evaluated with the
method A (U,) and B2. The latter uncertainties were evaluated with b; = 0.577 for a uniform
distribution (UBZ,bl) and with b, based on actual CMM verification data [2] (UBZ,bZ). See Table
11-20 for the meaning of the symbols in the column headers (measurands).

CMM D3 Dca d3y4 bBs Q)Big Dsmall
Usso1 1.37 1.27 1.22 1.15 1.37 1.27

o, :10- w0 Usn 0.94 0.88 0.84 0.79 0.94 0.88
Up 0.52 0.49 0.59 0.79 0.85 0.67

5.44 5.28 413 4.92 5.44 5.28

o, 270'30) Ugs b2 281 273 214 255 281 273
Up 234 252 2.20 273 259 3.25

Usso1 154 1.44 1.33 131 154 1.44

o, :1%_33) Uss.02 0.88 0.82 0.76 0.75 0.88 0.82
Up 0.87 0.88 0.93 0.93 0.90 0.88

Usoot 488 475 3.67 443 4.88 475

" :1(1)_47) Uss.p2 3.05 3.85 2.08 3.59 3.95 3.85
Un 2.82 2.80 2.96 2.84 2.84 2.85

All values in micrometres

Table 1I-23: Inter-method comparison — connecting rod. Chi-squared values evaluated from
the uncertainties reported in Table 1I1-22. Values are colour-coded (Table II-3).

CMM  Comparison Dcs Dca dsy PBS Dpig Dsmall
L Up VS Uy py 2.29 2.36 3.78 7.58 6.11 4.40
Up VS Ugy o 4.82 4.96 7.95 15.94 12.84 9.26

} Up VS Ugy 1 2.95 3.64 4.56 4.93 3.62 6.04
Up VS Ugypp | 11.04 13.60 17.03 18.42 13.54 22.58

10 UavsUszy 5.14 5.97 7.77 7.95 5.40 5.96
Up VS Ugppp | 15.89 18.44 23.99 24.57 16.67 18.41

1 UavsUszn 5.33 5.58 10.39 6.56 5.40 5.76
U VS Upzpa 8.12 8.49 15.82 9.99 8.22 8.77

The chi-squared analysis results were very good for all four CMMs. The method B2 uncertainty
based on actual CMM validation data, Ug,j;,, resulted compatible with the method A
uncertainty in all cases but CMM 1 for two out of six measurands. The method B2 uncertainty
based on MPEs, Ug, 51, Overestimated the uncertainty in most cases. No underestimation was
observed.

11-5.7.3 MFC standard (high quality)

MFCs are designed to provide a variety of dimensional and geometrical characteristics, to
provide a wide selection when testing CMM measuring capabilities. Twelve were considered
in this exercise to keep the analysis effort viable. They are reported in Table 11-24.
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Table II-24: Inter-method comparison — MFC. Definition of the measurands. See Figure [I-21.
See [12] for more details.

Symb.

Nom. value
/mm

Description

Diameter of the left external

More precisely ...

Da1 100 cylinder External diameter of Al
Bc 50 Diameter of the left coaxial Internal diameter of C
bore
. . Internal diameter of the right
Dk 49,5 Diameter of the conical seat section of K, 20 mm apart from E
Separation of the extreme Length of the portion of the MFC
lgr 200 b axis between the intersections with
ends
the planes E and F
Separation of diametricall 2D separation of the middle points
lg1Bs 75 o posed lonaitudinal bore)g of the axes of bores B1 and B5 in a
bp 9 plane orthogonal to the MFC axis
s i Straightness of a generatrix Straightness of the generatrix of A
Al of the left portion closest to the bore B7.
v ) Runout of the left coaxial Runout of C with Al taken as a
e bore datum
N i Total runout of the left coaxial Total runout of C with Al taken as
te bore a datum
Concentrlcny.of fhefeit Concentricity of C with Al taken as
Cc_a1 - external and internal
. a datum
cylinders
fe - Flatness of the left end Flatness of E
) Parallelism of the extreme Parallelism of F with E taken as a
PE-F ends datum
Perpendicularity of the . . .
Lec ) coaxial bore axis to the left Perpendicularity of C with E taken

end

as a datum

The expanded uncertainties evaluated with the methods A and B2 were compared. The latter
was evaluated with b; = 0.577 for a uniform distribution.

The MFC was measured with three different CMMs. However, the chi-squared analysis was
carried out only for two.

Similarly to the connecting rod, the degrees of freedom were 15 in the chi-squared analysis,
resulting in the same critical values (Table 11-21).

The resulting uncertainties and chi-squared analysis are reported in Table II-25.
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Table 1I-25: Inter-method comparison — high quality MFC. Uncertainties evaluated with the
method A (U,) and B2 with b, = 0.577 for a uniform distribution (Ug, ;). See Table 1I-24 for
the meaning of the symbols in the row headers (measurands). The chi-squared values are
colour-coded (Table 1I-3) with the thresholds given in Table 11-21.

Characteristic CMM 1 CMM 10
Ua Ug2,p1 x* Ua Ug2,p1 x°
Oar 0.67 1.19 511 0.96 1.22 9.98
Dc 0.64 1.11 5.31 0.75 1.13 7.09
B 0.63 1.11 5.15 2.79 113 OSSO
lgp 0.74 1.08 7.47 0.85 1.16 8.58
lpips 0.65 0.84 9.56 0.64 0.87 8.68
Sa1 0.60 0.78 9.51 0.56 0.78 8.30
Ve 0.65 0.74 12.20 0.65 0.75 11.78
Vie 0.85 0.82 17.12 1.51 0.83 52.68
Cc—A1 0.60 0.70 11.88 0.61 0.70 12.19
fE 0.60 0.77 9.72 0.68 0.77 12.55
DE-F 0.60 0.77 9.72 0.64 0.77 11.05
le ¢ 1.48 3.55 2.78 1.09 3.55 1.50

The results shown in Table II-25 are good and satisfactory. Most evaluations were compatible
with the method A, with a single case of underestimation and few overestimations.

The underestimation occurred for @k, which is a diameter. The comparison among the three
measured diameters (0,1, D¢, Dx) shows that the uncertainty of @k is quite larger than that of
the other two with the method A, while it is in line with them with the method B2. A possible
explanation is the following. @ was taken on a cone and the measurement was sensitive to
the directional response of the probing system. The method A is sensitive to the probing effects
while the method B2 is not.

11-5.7.4 MFC standard (low quality)

The same comparison described in 11-5.7.3 was carried out with a lower quality MFC standard.
Measurands (Table 11-24) and procedure were the same. The MFC standard was measured
by different CMMs and the two highest-accuracy CMMs were selected for the chi-squared
analysis.

The resulting uncertainties and chi-squared analysis are reported in Table II-26.
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Table 11-26: Inter-method comparison — low quality MFC. Uncertainties evaluated with the
method A (U,) and B2 with b, = 0.577 for a uniform distribution (Ug, ;). See Table 1I-24 for
the meaning of the symbols in the row headers (measurands). The chi-squared values are
colour-coded (Table 1I-3) with the thresholds given in Table 11-21.

Characteristic CMM 7 CMM 11
Ua Ugz,p1 x* Ua Usz,p1 x°
Dar 1.37 2.89 3.57 2.91 4.96 5.49
D¢ 1.38 2.74 4.04 2.87 4.82 5.69
(0% 1.53 2.74 5.01 3.09 4.81 6.58
lgp 1.59 2.51 6.44 4.05 3.91 17.24
lg1Bs 1.36 2.03 7.16 3.15 3.42 13.59
Sa1 1.37 1.95 7.98 2.94 3.50 11.25
Ve 1.41 1.84 9.49 3.77 3.23 21.85
Vic 1.41 2.03 7.75 3.77 3.59 17.69
Cc—A1 1.40 1.74 10.42 3.77 3.13 23.16
fe 1.36 1.92 8.04 2.88 3.46 11.07
PE-F 1.36 1.92 8.03 2.90 4.30 7.24
leg_c 1.44 8.87 0.42 2.90 3.46 11.19

The results shown in Table II-26 are good and satisfactory. Most evaluations were compatible
with the method A, with no underestimation and a few overestimations, of which that relative
to the perpendicularity Lg_ is severe for the CMM 7.

For both CMMs, better uncertainty estimation was achieved by taking the calibration rather
that the method A values as reference!3. The uncertainties of all characteristics were fully
compatible with either CMM, apart from Lg_c, which remained overestimated significantly.

The datum feature size was small compared to that of the toleranced feature (measurand),
resulting in high sensitivity of the datum. A possible explanation of the severe overestimation
is the following. The method A imposed that the sampling was always the same for all
repetitions and orientations. This applied to the datum feature as well, which was likely probed
always at the same points, resulting in a lack of sensitivity of the method A.

[I-6 Conclusions

An a priori method based on prior information of the CMM performance according to
EN ISO 10360-2 [2] and on the geometry of the measurand was developed and presented in
this Section 2. This method is referred to as B2 to distinguish it from the a posteriori method A—
also developed in the EUCoOM project but not part of this document [11]-and from the a priori
method B1 dealt with in Section 1.

The method is based on the sensitivity analysis of an essential set of representative points.
Closed-form equations for paradigmatic elementary measurement tasks were derived and
reported. They are easily implemented with non-specialist software such as spreadsheets and
listed in table for documentation, including a possible future international standard.

Extensive validation testing of the method B2 was performed. The tests were with several
CMMs and the following artefacts: a cylinder square, a reference ring, an industrial connecting
rod and two Multi-Feature-Check (MFC) standards. Uncertainties evaluated according either

13 The details are not reported here for brevity.
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to the EN 1SO 15530-3 [10] or to the Method A were compared with those evaluated with the
method B2. The comparison was implemented through chi-squared testing.

The method B2 proved to be mostly compatible with the EN ISO 15530-3. The results obtained
for the cylindrical square are particularly interesting. The investigation of the coaxiality when
varying the length (longitudinal size) of the datum feature and the distance to it of the
toleranced feature confirms the expectation that the uncertainties of different characteristics
measured with the same CMM may differ significantly. Also confirmed was the expectation that
the uncertainty of the diameter of a circle arc increases when the subtended central angle
decreases. For small central angles, the method B2 overestimates the uncertainty, just like
other methods.

The method B2 proved to be compatible with the method A too. Few cases were observed
where overestimation occurred, with a single case of underestimation. They require further
analysis.

The main characteristics of the method B2 are summarised below.

e The method takes data according to EN ISO 10360-2 testing as main input for the
uncertainty evaluation; the data may be either the actual values incurred in testing or
the MPEs. This information is likely available to any user of metrologically-confirmed
CMMs.

e The method considers an essential set of representative points only, as opposed to the
possibly many in the sampling plan. The points may be on either integral features
(surface points) or derived features (such as axes, datums and sphere centres), the
latter being in fact localisation points of features. The noise compression due to the
redundancy of the many more sampling points does not take place in the method B2,
leading to possible overestimation. This is acceptable, or even recommended, in view
of the associated cost reduction or time shortening.

e The method is able to link the prior information on the CMM performance in size
measurements [2] to that for any other dimensional or geometrical characteristic.

¢ The method currently disregards the effects due to the workpiece itself, such as the
form error, but in principle it could be adapted to account for it too.

e Over twenty different cases of elementary characteristics were investigated. For each,
the essential set of points and the closed-form sensitivity equations were given.

e The software validation procedure described in ISO/TS 15530-4 [13] and the
suggestion therein to use a cylindrical square proved adequate for validating the
method B2. However, the uncertainty comparison was carried through chi-squared
analysis rather than the normalised error En.

e Experience in applying the method B2 to diverse geometric characteristics show that
most uncertainty values fall within the range [0.8 — 2] of the A coefficient in the
expression of the MPE (E_mre = A + L/B). Exceptions were the coaxiality when a short
datum feature is well separated from the toleranced feature, and the radius of the circle
arc subtending a small central angle. In these cases, the uncertainty may be
significantly larger.

e The expected B2 uncertainty’s independence of the workpiece orientation in the CMM
volume was confirmed. Any orientation can be assumed for the calculations, whichever
is simplest. A good candidate is according to the drawing or CAD model.

e When applying the method to different CMMs—as long as the measurands remain the
same—or when the b coefficient (to derive the uncertainty from the EN ISO 10360-2
data) is updated (e.g., to apply a different assumption on the error distribution), no re-
evaluation of the partial derivatives is needed and the conversion can be done easily
in a spreadsheet.

e Very importantly, this document did not consider all possible variants in deriving the
measurand from an essential set of points. This applies particularly to deriving a normal
vector to a plane through 3 points (A, B, C). This is evaluated as the cross product of
two vectors having extremes in a combination of the three points, resulting in AB x AC

- 11-38 -



EUCoM D2 Report: A Priori (type B) evaluation 11/2021

[-7

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

-11-3

or BA X BC or CA x CB. The sensitivity equations are not the same for each option. To
choose one properly, all three ought to be evaluated and that resulting in the smallest
uncertainty chosen. This explains, e.g., the sharp change of slope in the graph of the
uncertainty of a circle arc diameter in Figure 1l-1 at s = 74 mm. The method, despite
its simplicity, cannot be used effectively without suitable software.
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Annex lI-A Details of the chi-squared analysis of the cylinder
square

The following tables are clustered in groups of three. Each group is about a different length of
the datum feature, but the last group is about the common datum A-B. The three tables in each
group report the analysis of Uy, U,, U,, respectively, versus the uncertainty evaluated with the
method B2.

The x? values are reported in the last two columns of each table, derived for the values b, and
b,, respectively, of the coefficient b.

The values of y? are colour-coded (Table 1I-3).
Length of the datum feature, [, = 10 mm

Table 1I-27: Chi-squared analysis with the experimental uncertainty U;. Length of the datum
feature, [, = 10 mm.

Bi m m Z z

dimm o dpm Uyfum (bijB:Z/g.SB) (sziztl)L.l459) (b, = 0577) (b, = 0.450)
5 426 199 871 10.3 8.2 14.23 2252
10 484 276 1071 13.1 10.4 13.45 21.29
15 599 239 1116 16.7 13.2 8.99 14.22
20 808 362 1559 20.7 16.4 11.39 18.03
25 839 347 1560 24.9 19.8 7.87 12.45
30 1163 519 2220 29.2 23.2 11.55 18.28
35 1333 528  24.07 33.6 26.7 10.25 16.22
40 1378 627 2648 38.1 30.3 9.67 15.29
45 1479 542 2582 42.6 33.9 7.35 11.63
50 1699 673 3060 471 37.4 8.44 13.36
55 1859 692 3258 51.6 411 7.96 12.59
60 18.76 727 3345 56.2 44.7 7.09 11.21
65 2133 787 37.20 60.8 48.3 7.50 11.86
70 2129 827 37.95 65.3 51.9 6.75 10.68
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Table 11-28: Chi-squared analysis with the experimental uncertainty U,. Length of the datum
feature, [, = 10 mm.

Bias Ug,/um Ug,/um Z Z

dimm - m  Ye/M Upfum 2/8.58) (b, 229.1459) (b, =X5.577) b, =X5.459)
5 426 199 962 10.33 8.21 17.35 27.45
10 484 276 1132  13.06 10.39 15.01 23.75
15 599 239 1304  16.65 13.24 12.27 19.41
20 808 362 1781 2066 16.42 14.88 23.54
25 839 347 1826 2487 19.77 10.78 17.06
30 11.63 519 2554 2921 23.22 15.29 24.19
35 1333 528 2874 3363 26.73 14.61 23.12
40 1378 627 3034 3809 30.28 12.69 20.08
45 1479 542 3157 4258 33.85 10.99 17.40
50 1699 673 3660  47.10 37.45 12.08 10.11
55 1859 692 3972 5164 41.05 11.83 18.72
60 1876 727 4030  56.19 44.67 10.29 16.28
65 2133 787 4552 6075 48.30 11.23 17.77
70 2129 827 4573 6532 51.03 9.80 15.51

Table 11-29: Chi-squared analysis with the experimental uncertainty U,. Length of the datum
feature, [, = 10 mm.

Bi m m 2 2

o b/n?rs; up/im — Uy/um (bijB:Z/g.SB) (sziztl)L.l459) (b, =X5.577) (b, =X5.459)
5 426 199 7.92 10.33 8.21 11.77 18.62
10 484 276 11.37 13.06 10.39 15.14 23.95
15 599 239 9098 16.65 13.24 7.19 11.37
20 808 362 14.30 20.66 16.42 9.58 15.16
25 839 347 14.38 24.87 19.77 6.68 10.57
30 11.63 519  20.37 29.21 23.22 9.73 15.39
35 1333 528  22.00 33.63 26.73 8.56 13.55
40 1378 627 24.44 38.09 30.28 8.24 13.03
45 1479 542 2371 42.58 33.85 6.20 9.81
50 16.99 6.73  28.09 47.10 37.45 7.11 11.25
55 1859 6.92  30.25 51.64 41.05 6.86 10.86
60 1876 7.27  30.78 56.19 44.67 6.00 9.50
65 2133 7.87 3421 60.75 48.30 6.34 10.03
70 2129 827 35.04 65.32 51.93 5.75 9.10

- 11-42 -



EUCoM D2 Report: A Priori (type B) evaluation 11/2021

Length of the datum feature, [, = 15 mm

Table 11-30: Chi-squared analysis with the experimental uncertainty U,. Length of the datum
feature, [, = 15 mm.

Bias Ug,/pm Ug,/pum Z Z
dimm pom  Me/MM  Uufum (bllzg.SS) (b, 220‘.1459) (b, =Xc1).577) (b, =Xc2>.459)

5 377 226 872 9.7 77 16.04 25.37
10 423 271 10.00 111 8.8 16.22 25.67
15 543 255 1091 131 104 13.96 22.09
20 594 366 1352 15.4 122 15.42 24.40
25 891 511 1933 18.0 143 23.18

30 1065 528 2139 20.7 16.4 21.44

35 1050 594 2255 235 186 18.49 29.25
40 1130 496 2143 26.3 20.9 13.27 21.00
45 1222 543 2326 29.2 232 12.68 20.07
50 1357 582 2537 32.1 256 12.46 19.71
55 1419 567 2571 351 27.9 10.72 16.97
60 16.14 607 2845 38.1 303 11.16 17.66
65 16.09 6.08 28.42 41.1 32.7 9.57 15.15

Table 11-31: Chi-squared analysis with the experimental uncertainty U,. Length of the datum
feature, [, = 15 mm.

Bl 2 2
dimm s upm Upfum (bijB:z/g.rgs) (szizéHZEQ) (b =X5.577) (b, =X5.459)
5 377 226 902 9.74 7.74 17.18 27.18
10 423 271 1024  11.10 8.83 17.01 26.91
15 543 255 1217  13.06 10.39 17.35 27.45
20 594 366 1409 1540 12.24 16.75 26.51

25 891 511 2064  17.95 14.27 26.43
30 1065 528 2385  20.66 16.42 26.67
35 1050 594 2421 2345 18.64 21.32
40 1130 496 2477 2631 20.92 17.73 28.05
45 1222 543 2682 2921 23.22 16.86 26.68
50 1357 582 2960  32.15 25.56 16.95 26.82
55 1419 567 30.64 3511 27.91 15.23 24.09
60 16.14 6.07 3455  38.09 30.28 16.46 26.04
65 16.09 6.08 3447  41.08 32.66 14.08 22.27
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Table 11-32: Chi-squared analysis with the experimental uncertainty U,. Length of the datum
feature, [, = 15 mm.

Bias Ug,/um Ug,/um Z Z

dimm - em /M Uum o B=2/(L)1.58) (b, 2289459) (b, =Xc1).577) b, =X5.459)
5 377 226 807 9.74 7.74 13.73 21.72
10 423 271 932 11.10 8.83 14.09 22.29
15 543 255 1007  13.06 10.39 11.89 18.82
20 594 366 1278 1540 12.24 13.78 21.80
25 891 511 1807  17.95 14.27 20.26 32.05
30 1065 528 2009 2066 16.42 18.92 29.93
35 1050 594 2098 2345 18.64 16.01 25.33
40 1130 496 1996 2631 20.92 11.51 18.22
45 1222 543 2174 2921 23.22 11.08 17.53
50 1357 582 2363 3215 25.56 10.81 17.10
55 1419 567 2431 3511 27.91 9.59 15.17
60 1614 607 2683  38.09 30.28 9.92 15.70
65 1609 608 2652  41.08 32.66 8.33 13.18

Length of the datum feature, [, =20 mm

Table 11-33: Chi-squared analysis with the experimental uncertainty U,. Length of the datum
feature, [, = 20 mm.

Bl 2 2
dimm M Uyfum (bijB:z/g.rgs) (szizg.ﬂg) (b =X5.577) (b, =X5.459)
5 318 170 7.3 95 7.6 11.21 17.73
10 390 164 7.73 103 8.2 11.21 17.73
15 413 231 917 115 9.2 12.61 19.95

20 669 388 1471 131 104 25.36
25 799 529 1876 148 118 32.19
30 746 468 17.03 16.7 132 20.92
35 738 417 1597 186 148 1471 23.27
40 878 511 19.20 20.7 16.4 17.29 27.35
45 956 456 18.90 227 18.1 13.81 21.84
50 969 481 1951 24.9 19.8 12.30 19.46
55 1126 534 2212 27.0 215 13.39 21.19
60 1048 550 21.67 29.2 23.2 11.00 17.41
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Table 11-34: Chi-squared analysis with the experimental uncertainty U,. Length of the datum
feature, [, = 20 mm.

Bias m m Z Z

dimm pom UMM Upfum (b?zlg.ss) (szizé)H459) (b, =X(1).577) (b, =X5.459)
5 318 170 7.49 9.52 7.57 12.38 19.59
10 390 164 869 10.33 8.21 14.15 22.38
15 413 231 968 1155 9.18 14.04 22.22
20 669 388 1560  13.06 10.39 28.53

25 799 529 19.27 14.79 11.76

30 746 468 17.73  16.65 13.24 22.67

35 738 417 1708  18.62 14.80 16.82 26.62
40 878 511 2042 2066 16.42 19.55 30.93
45 956 456 2127  22.74 18.08 17.50 27.68
50 069 481 2172 2487 19.77 15.25 2413
55 1126 534 2500  27.03 21.49 17.11 27.07
60 1048 550 2376 2921 23.22 13.23 20.93

Table 1I-35: Chi-squared analysis with the experimental uncertainty U,. Length of the datum
feature, [, = 20 mm.

Bias m m 2 .

dimm - m  Ye/MM Us/um (b?zlg.ss) (szizé)H459) (b, =X(1).577) (b, =X5.459)
5 318 170  6.48 9.52 7.57 9.26 14.66

10 390 164 6.98 10.33 8.21 9.14 14.46

15 413 231 843 11.55 9.18 10.67 16.88

20 669 388 13.88 13.06 10.39 2257 |G
25 799 529 1779 1479 11.76 2896  |4582 0
30 746 468 1596  16.65 13.24 18.37 29.06

35 738 417 1493  18.62 14.80 12.85 20.34

40 878 511 2143  20.66 16.42 2152 [SA0N
45 956 456 17.42 2274 18.08 11.74 18.57

50 969 481 1820  24.87 19.77 10.71 16.95

55 1126 534 2041  27.03 21.49 11.40 18.04

60 1048 550 2023  29.21 23.22 9.59 15.17
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Length of the datum feature, [, = 25 mm

Table 11-36: Chi-squared analysis with the experimental uncertainty U,. Length of the datum
feature, [, = 25 mm.

Bias Ugo/um Ug,/um 2 2

dimm ;. om  de/MM Ui/um (b1]3=28.58) (b, 220&459) (b, =Xc1).577) (b, =X5.459)
5 391 221 876 9.4 7.5 17.28 27.35
10 431 203 884 9.9 7.9 15.77 24.96
15 58 332 1282 10.8 8.6 28.31 |NAAE0N
20 7.35 361 1485 11.8 9.4 31.50

25 698 355 1435 13.1 10.4 24.13

30 636 355 1373 14.4 115 18.10 28.63
35 819 336 1520 15.9 12.6 18.29 28.94
40 892 457 1827 17.4 13.9 21.97

45 899 382 16.89 19.0 15.1 15.76 24.94
50 1066 3.88 18.68 20.7 16.4 16.36 25.89
55 980 3.88 17.81 22.3 17.7 12.73 20.14

Table 11-37: Chi-squared analysis with the experimental uncertainty U,. Length of the datum
feature, [, = 25 mm.

Bias Ug,/um Ug,/um 2 2

dimm -y im UMM Uzfum (b1]3=28.58) (b, 2209459) (b, =X5.577) (b, =X5.459)
5 391 221 920 9.42 7.49 19.07 30.17
10 431 203 9.73 9.95 7.91 19.14 30.29
15 588 332 13.66 10.77 8.56 32.13

20 735 361 16.50 11.83 9.40

25 698 355 1579 13.06 10.39 29.22

30 6.36 355 14.70 14.43 11.47 20.74 32.82
35 819 336 17.82 15.89 12.64 25.15

40 892 457 20.14 17.43 13.86 26.69

45 899 382 19.63 19.02 15.12 21.31

50 10.66 3.88 22.79 20.66 16.42 24.34

55 9.80 3.88 21.17 22.32 17.75 17.99 28.46
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Table 11-38: Chi-squared analysis with the experimental uncertainty U,. Length of the datum
feature, [, = 25 mm.

Bias m m Z Z

dimm - pm de/MmM Us/um (b?zlg.ss) (szizg.l459) (b, =Xc1).577) (b, =X5.459)
5 391 221 820 9.42 7.49 15.14 23.95
10 431 203 804 9.95 7.91 13.06 20.67
15 588 332 1207 10.77 8.56 25.09

20 735 361 1378  11.83 9.40 27.14

25 698 355 1328  13.06 10.39 20.68 32.72
30 636 355 1330  14.43 11.47 17.00 26.90
35 819 336 1394 1589 12.64 15.38 24.33
40 892 457 16.97 17.43 13.86 18.97 30.01
45 899 382 1541 19.02 15.12 13.13 20.78
50 1066 388 1689  20.66 16.42 13.38 21.17
55 980 388 1627  22.32 17.75 10.62 16.80

Length of the datum feature, [, = 30 mm

Table 11-39: Chi-squared analysis with the experimental uncertainty U;. Length of the datum
feature, [, = 30 mm.

Bias Ug,/um Ug,/pm 2 2

dimm - pim MM Uufum (b1]3=28.58) (b, 2209459) (b, =X5.577) (b, =X5.459)

5 342 191 7.73 9.4 7.4 13.63 21.57

10 519 380 13.05 9.7 77 3594 5687

15 555 3.60 13.03 10.3 8.2 31.85

20 523 330 1213 11.1 8.8 23.88

25 553 326 12.36 12.0 9.6 21.13

30 573 344 12.90 13.1 10.4 19.50 30.86

35 652 459  15.90 14.2 11.3 25.11

40 577 321 1250 15.4 12.2 13.18 20.85

45 617 394 1431 16.7 13.2 14.76 23.36

50 6.66 378 14.47 18.0 14.3 12.99 20.56
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Table 11-40: Chi-squared analysis with the experimental uncertainty U,. Length of the datum
feature, [, = 30 mm.

Bias m m Z Z

dimm pom UMM Upfum (b?zlg.ss) (szizé)L.l459) (b, =Xc1).577) (b, =X5.459)
5 342 191 809 9.37 7.45 14.92 23.61
10 519 380 13.03 9.74 7.74

15 555 360 1339  10.33 8.21

20 523 330 1253  11.10 8.83 25.49

25 553 326 13.00  12.02 9.56 23.38

30 573 344 1352 13.06 10.39 21.43

35 652 459 1606  14.19 11.28 25.62

40 577 321 1336  15.40 12.24 15.07 23.84
45 617 394 1479  16.65 13.24 15.77 24.94
50 666 378 1544  17.95 14.27 14.78 23.39

Table 1I-41: Chi-squared analysis with the experimental uncertainty U,. Length of the datum
feature, [, = 30 mm.

Bias m m z 2

dimm pom UMM Usfum (b?zlg.ss) (szizé)L.l459) (b, =X5.577) (b, =Xc2>.459)
5 342 191 7.9 9.37 7.45 11.78 18.65

10 519 380 12.83 9.74 7.74

15 555 360 12.06  10.33 8.21 27.26

20 523 330 1121 11.10 8.83 20.37 32.24

25 553 326 1154  12.02 9.56 18.41 29.13

30 573 344 14.01 13.06 10.39 2299 [NS6R
35 652 459 1477  14.19 11.28 21.66 84260
40 577 321 1160 1540 12.24 11.36 17.98

45 617 3.94 1351 16.65 13.24 13.17 20.83

50 6066 378 1346  17.95 14.27 11.24 17.78

Length of the datum feature, [, = 35 mm

Table II-42: Chi-squared analysis with the experimental uncertainty U;. Length of the datum
feature, [, = 35 mm.

Bias Ug,/um Ug,/pm 2 A

dimm o YefHM Uufum (b1B=28.58) (b, 2209459) (b, =0.577) (b, = 6.459)
5 5096 325 1277 9.3 7.4

10 591 443 1500 9.6 76

15 527 407 1365 101 8.0

20 572 283 1173 106 85

25 647 382 1437 114 9.0

30 704 383 1494 122 9.7

35 623 386 1420 131 104

40 738 419 1600 140 11.2

45 618 418 1478 150 12.0 19.29 30.53
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Table 1l-43: Chi-squared analysis with the experimental uncertainty U,. Length of the datum
feature, [, = 35 mm.

i 2 2

bimm (b, =0.58) (b, = 0.459) (b, = 0.577) (b, = 0.459)

5 596 325 13.73 9.33 Za @@

10 5.91 4.43 14.92 9.61 7.64

15 5.27 4.07 13.46 10.05 7.99

20 5.72 2.83 12.93 10.64 8.46

25 6.47 3.82 15.16 11.35 9.03

30 7.04 3.83 16.14 12.17 9.67

35 6.23 3.86 14.78 13.06 10.39 25.62

40 7.38 4.19 17.09 14.03 11.15 29.67

45 6.18 4.18 15.05 15.05 11.96 20.02 31.68

Table 11-44; Chi-squared analysis with the experimental uncertainty U,. Length of the datum
feature, [, = 35 mm.

Bias Ug,/um Ug,/um 2 2

dimm i UMM Usfum (blezg.SS) (b, 2209459) (b, =X5.577) (b, =X5.459)
5 596 325 11.84 9.33 7.42 32.18

10 591 443 13.92 9.61 7.64

15 527 407 12.67 10.05 7.99

20 572 283 10.87 10.64 8.46

25 647 382 13.60 11.35 9.03

30 7.04 383 13.96 12.17 9.67

35 623 386 13.39 13.06 10.39

40 738 419 14.89 14.03 11.15

45 618 418 14.08 15.05 11.96 17.50 27.69
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Table 11-45: Chi-squared analysis with the experimental uncertainty U,;. Common datum A-B,
lA—B = 80 mm.

Bias Ugo/um Ug,/um 2 2
Mmm - m /MM Uafim (bllzg.SS) (b, 220‘.1459) (b, =Xc1).577) (b, =Xc2>.459)
5 309 228 806 9.3 7.4 15.17 24.00
10 266 103 553 9.3 7.4 7.07 11.18
15 302 114 6.05 9.4 75 8.28 13.11
20 262 138 6.2 9.5 7.6 8.00 12.65
25 306 121  6.20 9.7 7.7 8.22 13.00
30 250 142 596 9.9 7.8 7.31 1157
35 270 183 687 10.1 8.0 9.29 14.70
40 465 3.16 11.28 10.3 8.2 2388 SR
45 426 363 1179 10.1 8.0 27.34
50 340 3.38 1045 9.9 7.8 22.44
55 370 1.94 8.6 9.7 7.7 13.87 21.95
60 409 220 892 9.5 7.6 17.56 27.78
65 377 206 835 9.4 7.5 15.77 24.95
70 303 172  7.00 9.3 7.4 11.31 17.89
75 308 146  6.62 9.3 7.4 10.23 16.19

Table 11-46: Chi-squared analysis with the experimental uncertainty U,. Common datum A-B,
lA—B = 80 mm.

Bias Ug,/um Ug,/pm 2 A

himm o Ye/HM Uzfum (b1B=28.58) (b, 2209459) (b = 0.577) (b, = 0.450)
5 300 228  7.93 9.3 7.4 14.68 23.23
10 266 103 605 9.3 7.4 8.44 13.35
15 302 114 6.5 9.4 75 10.32 16.33
20 262 138 625 95 76 8.61 13.62
25 306 121 688 9.7 7.7 10.11 16.00
30 250 142 608 9.9 7.8 7.59 12.01
35 270 183 683 101 8.0 9.17 14.50
40 465 316 1142 103 8.2 24.46

45 426 363 1137 101 8.0 25.44

50 340 338  9.80 9.9 7.8 19.72 31.21
55 370 194 859 9.7 7.7 15.74 24.91
60 409 220 950 95 76 19.91 31.50
65 377 206 882 9.4 75 17.61 27.86
70 303 172 7.4 9.3 7.4 12.11 19.16
75 308 146 711 9.3 7.4 11.80 18.66
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Table 11-47: Chi-squared analysis with the experimental uncertainty U,. Common datum A-B,
lp_g =80 mm.

Bias Ug,/um Ug,/um Z Z
himm - om WM Ufum B=2/(L)1.58) (b, 2269459) (b, =Xc1).577) b, =X5.459)
5 309 228 830 9.26 7.36 16.08 25.44
10 266 1.03  4.80 9.31 7.40 5.32 8.41
15 302 114 534 9.40 7.47 6.45 10.21
20 262 138 542 9.52 7.57 6.47 10.24
25 306 121 543 9.68 7.69 6.29 9.95
30 250 142 539 9.87 7.84 5.96 9.43
35 270 183 6.41 10.08 8.02 8.09 12.80
40 465 316 1051 10.33 8.21 20.70 32.75

45 426 363 1086  10.08 8.02 2322 e
50 340 338 955 9.87 7.84 18.73 29.64
55 370 194  7.39 9.68 7.69 11.66 18.45
60 409 220 817 9.52 7.57 14.73 23.31
65 377 206 7.73 9.40 7.47 13.53 21.40
70 303 172 6.35 9.31 7.40 9.32 14.74
75 308 146 5094 9.26 7.36 8.23 13.02
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Conclusions

Two a priori methods were introduced in this document for the evaluation of the measurement
uncertainty in coordinate metrology. They are a priori in that the information they use is known
prior to any measurement is taken. Following the GUM's classification of uncertainty
evaluations (Type A and B, founded on frequency and a priori distributions, respectively), these
methods are referred to as Methods B.

These methods follow the main stream described in the GUM: the input uncertainty are
identified and evaluated, and then propagated to the combined uncertainties. This requires two
pieces of information: the input uncertainties and the sensitivity coefficients.

The input uncertainties are derived from known and standardized values of CMM metrological
characteristics, either the measured values in actual EN ISO 10360 testing (when available)
or their associated MPEs (Maximum Permissible Error) derived from data sheet or other
sources.

The sensitivity coefficients are often conveniently arranged in matrices. They encode the
information of the geometry of the problem, the sampling strategy and the selection and
sequence of mathematical operators used to derive the results. The geometry is usually
encoded in a drawing or CAD model and it is available as long as a specific measurement task
is defined. The choice of the sampling and computational strategies is a valuable part of the
metrologist’'s role. Different metrologists may favour different strategies deemed as most
valuable for a specific characteristic. For instance, a very accurate strategy may be very
expensive as well. Predicting the strategy-specific uncertainty is a valuable tool for designing
and optimising experimental plans.

The proposed methods are unidirectional in their flow: given a strategy (and other information),
they derive the uncertainty. The opposite (given a target uncertainty, define a strategy) would
be very useful but difficult to do. The proposed approach leaves the optimisation to the
metrologist’s expert judgement, who decides which strategies to try out. The evaluation
method helps in comparing alternatives by predicting the uncertainty of each, in a
trial-and-error approach.

The two methods B proposed in this document share the same approach to the evaluation of
the input uncertainties, based on EN ISO 10360-based information. They differ instead in the
sensitivity analysis, resulting in completely independent methods.

o Method B1 divides the sensitivity analysis in two steps: from the input uncertainties to
the sampled points (point cloud), and from the point cloud to the measurands. The
former step is based on approximated models of the CMM behaviour, constrained to
be consistent with the EN ISO 10360 performance. The latter step is independent of
any CMM and is a pure geometrical problem.

e Method B2 is based on the careful selection of a small set of points. They may lay either
on the workpiece surface or on a derived feature such as the axis of a cylinder. The set
must be essential and paradigmatic: essential in that the measurands would not be
achievable with lesser points; paradigmatic in that their locations represent reasonable
sets of nearby measured points. As the set is essential (no redundancy and then no
approximation), the measurands can be derived from the selected points in closed
form. The sensitivity matrix is then formed by derivation of such analytical expressions.

Method B1 is very rigorous in its GUM-compliant approach. The price paid to dominate the
intrinsic complexity of the problem is the approximation of the CMM error model. The rigid body
model is well known in literature and well known is its very large number of error parameters,
order of several hundreds. This would require a huge input variance matrix impossible to
predict. The model is then simplified drastically based on the experience that few errors
dominates and that close points are likely behaving similarly. The resulting few model
parameters can be derived from the EN ISO 10360 values. Method B1 is able of tailoring the
uncertainty evaluation to fine details of the sampling strategy, particularly when alternatives
are evaluated. On the other hand, it requires dedicated software—all based on linear algebra
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and implementable in common spreadsheets—whose development is usually not in the reach
of CMM users.

The approximation underpinning Method B2 is completely different conceptually. Actual points
are addressed collectively by means of the selected set. Subtleties in the probing strategies
are disregarded by the method, which is then not suitable to discriminate among alternatives.
On the other hand, the closed form enables derivation of the sensitivity coefficients once for
all for any measurand. The resulting equations are simple enough that its coding in software
is in the reach of educated CMM users. They can be recorded in tables and published in
standards, so that no specific software is essential for applying the method.

The proposed methods are mature enough to be submitted for standardization to the
competent ISO/TC 213/WG 10, as underpinned by the validation results reported in the project
deliverables D3 and D4.
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