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1 Abstract 
This documents describes two a priori methods for evaluating the uncertainty of measurement 
in coordinate metrology. A priori means that the needed information is known prior to the actual 
measurement. This enables predicting the uncertainty and then comparing among possible 
different experimental plans to pursue one or more measurands. These methods are referred 
to as Methods B to reflect the type B evaluation of the uncertainty according to the GUM. 
The main source of prior information is the set of metrological characteristics standardized in 
the EN ISO 10360 series of standards, which is well accepted and widely used in industry. 
Either the actual measured values or the specification on data sheets (the MPEs, Maximum 
Permissible Errors) of such metrological characteristics can be fed to the methods B. 
To propagate the input uncertainties to the combined uncertainties, suitable sensitivity 
coefficients are needed, usually arranged in matrices. These matrices reflect the nominal 
geometry at hand, the sampling strategy and the sequence and choice of mathematical 
operators employed to derive the results. They are independent of actual measurements taken 
and hence predicable. 
Two Methods B are described in this document, referred to as B1 and B2. The latter was not 
anticipated in the project protocol and is and extra result of the project. The two methods are 
similar in the evaluation of the input uncertainties but completely different and independent to 
each other in the sensitivity analysis, that is, in the way the input uncertainty are propagated 
to the combined uncertainties. 

2 Introduction 
2.1 Project background 
EUCoM – Evaluating Uncertainties in Coordinate Measurement – is an EMPIR/Euramet-
supported project to develop new methods for estimating the uncertainties of tactile 
measurements. There are two basic approaches, named methods A and B1: 

• A posteriori (Method A): Estimate uncertainties using experimental data from repeated 
measurements in four different orientations. A length and a sphere standard must also 
be measured.  

• A priori (Method B): Estimate uncertainties using expert knowledge and performance 
characteristics of or prior experience with the CMM (coordinate measuring machine) 
being used. 

In essence, method A is an empirical approach to measurement uncertainty. While it requires 
more measurement work to be done, it does not depend on any modelling of the particular 
measurement system used to obtain it. Method B is the exact opposite, requiring no prior data 
other than information that would usually be available from prior use of the system. 
2.2 Objective of a priori methods 
The main objective of a priori methods is to predict the uncertainty before any measurements 
are taken. This is useful for checking whether a perspective measurement strategy is adequate 
for a predefined target uncertainty and to compare among alternative CMMs and strategies. In 
this way, a priori methods are important design of experiment tools and important for 
constructing a measurement methodology that will be fit for purpose. 
Another objective of a priori methods is to estimate the uncertainties associated with actual 
measurements based on information that is available prior to the measurements without the 
need for i) additional statistical analysis of the actual measurement results, which may require 

                                                 
1 The methods are named “A” and “B” with reference to the types of evaluation of the uncertainty 

described in the GUM [3] 4.2 and 4.3. 
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resources that are not available, nor ii) additional experiments that are required by a posteriori 
methods. 
The a priori nature of methods B imposes that the evaluation cannot count on experimental 
information derived from the specific measurement being evaluated, it can only on general 
information about the CMM and the environment. As a consequence, the information fed to 
methods B is likely weaker than to methods A: the uncertainty evaluated with methods B will 
likely be coarser. When both methods are applicable, methods B are recommended only when 
the target uncertainty is not tight, in view of the saving of the experimental effort. 

3 A priori information available to type B methods 
The ambition of methods B is to rely on information that is already available to the user with 
no or little extra experimental effort. 
Two main sources of information are needed to evaluate the uncertainty according to the GUM: 
the input standard uncertainties and the sensitivity coefficients. The following sections address 
either one. 
3.1 Input uncertainties 
The main source of such information is the metrological characteristics of CMMs as defined in 
the EN ISO 10360 series of standards. This series provides a set of predefined indicators–the 
metrological characteristic–to measure the CMM performance. CMMs are versatile and 
re-programmable instruments able to perform a virtually infinite number of measurement tasks. 
Verify them all experimentally would not be viable for any standardized procedure. The 
approach of the EN ISO 10360 is to select a limited number of measuring tasks identified by 
the standard maker2 as a reasonable compromise between thoroughness and coverage of the 
tests. These tasks are summarised by a set of metrological characteristics deemed as 
paradigmatic of the actual CMM performance. The most relevant for the methods B in this 
document–which is limited to tactile Cartesian CMMs–are defined in EN ISO 10360-2 [1] and 
EN ISO 10360-5 [2], namely: 

• EL, length measurement error (EN ISO 10360-2). This is the error of indication of a 
CMM when measuring a calibrated test length bi-directionally. A calibrated test length 
is implemented by means of either a material or an immaterial standard of size. 
Examples of material standards of size are gauge blocks and step gauges; examples 
of immaterial ones are a CMM rectilinear movement directly measured by 
interferometry. Bi-directionally means that the probing occurring at the opposite ends 
of the standard are along opposite directions. For instance, this is the natural case for 
gauge blocks, it is between an even and an odd face of a step gauges, and it is on the 
opposite faces of an auxiliary short gauge blocks sliding along a straight line whose 
displacement is measured interferometrically3. 
This metrological characteristic captures the CMM capability of measuring distances 
accurately regardless of their orientations in the measurement volume. It is a powerful 
indicator of how well-behaved the measurement volume is. The volume can be 
envisaged as a 3D grid of equally-spaced coordinate lines; only when the grid is 
perfectly straight, square and traceably sized, the distance between any points pair is 
without error. The errors are a good measure of how the actual volume deviates from 
the nominal, that is, how curved, oblique and expanded/compressed it is. 

• PSize, size error (EN ISO 10360-5). This is the error of indication of the diameter of a 
calibrated test sphere measured with one or more styli, each probing a predefined 
number of points (25) evenly spaced on a hemisphere. 

                                                 
2 The competent standardization body is the ISO/TC 213 Dimensional and Geometrical Product 

Specification and Verification. The preparation work on this subject matter is assigned to the 
ISO/TC 213/WG 10 CMMs. 

3 More examples and details are found in the Annex B of [2]. 
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This metrological characteristic captures the CMM capability of a probing system of 
localising the probed points on the workpiece surface relative to a representative point 
of the ram whose coordinates are measured as the three scale readings. A positive 
error indicates that the surface is sensed as shifted out of the material and vice versa. 

• PForm, form error (EN ISO 10360-5). This is the form error (span of the radial distances 
of the measured points) of a calibrated test sphere measured with one or more styli, 
each probing a predefined number of points (25) evenly spaced on a hemisphere. As 
the actual form error of the test sphere is required to be small relative with the CMM 
performance, the measured form error is attributed to the CMM. 
This metrological characteristic captures the CMM capability of a probing system of 
sensing the workpiece surface independently of its orientation, or equivalently, 
independently of the probing direction. Any anisotropy of the probing system results in 
a measured form error of the nearly perfectly-shaped test sphere. 

• LDia.5×25, multi-stylus location error (EN ISO 10360-5). This is the 3D span4 of 5 test 
sphere centres measured with as many different styli (e.g., those of a star stylus 
system). When multiple styli are involved in a same measurement, the relative offsets 
of their tip centres are very relevant for the final accuracy and are taken care of 
automatically by the CMM. The offsets are derived experimentally beforehand in the 
qualification procedure of the probing system. Any error in determining such offsets 
results in measuring a same physical sphere at different locations.  
This metrological characteristic captures the CMM capability of relating the 
measurements taken with different probe styli to each other. 

The above metrological characteristics are subject to MPEs (Maximum Permissible Errors). 
They are set by the CMM manufacturer for acceptance testing and by the CMM user for 
reverification testing. In all cases, testing according to the EN ISO 10360 series requires that 
each metrological characteristic is assigned an MPE. 
When applying methods B, the actual values of the metrological characteristics may or may 
not be available. A necessary condition for the former case is that the CMM is identified: 
different CMMs–even of the same model–may perform differently within the common MPEs. 
When a specific CMM is not defined instead (even if its model is), such values are not available. 
This situation may occur when several CMMs of the same model are available–for instance in 
a large laboratory or workshop–or when one or more models are being compared to each other 
based on a specific measurement task. 
In all cases, MPEs are assumed to be available. They may be derived from the CMM data 
sheets, or from the purchase contract, or from company regulations aiming at guaranteeing 
that the CMM is fit for purpose. 
When both the measured value and the MPE are available of a metrological characteristic, it 
is recommended that the former is fed to the methods B for the uncertainty evaluation. In fact, 
the measured values are more tailored to a specific CMM than the MPEs are, which applies to 
all CMMs of that model instead. 
3.2 Sensitivity coefficients 
The sensitivity coefficients express how the measurand varies when the input quantities vary: 
the more it does the larger the coefficients. Their fundamental role is in the propagation of the 
input uncertainties to the combined uncertainty. 
When the measurand is scalar, i.e. when a single quantity is under measurement, the 
sensitivity coefficients are the partial derivatives of the measured quantity to the input 
quantities, see [3] 5.1.3. They collectively form a vector with as many components as input 
quantities. A convenient equation for the propagation is 

                                                 
4 More precisely, this is the diameter of the minimum circumscribed sphere encompassing all measured 

centres. 
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 𝑢𝑢y2 = 𝒄𝒄T𝑽𝑽𝒙𝒙𝒄𝒄,             𝑐𝑐𝑗𝑗 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

 

where 𝒄𝒄 is the vector of the 𝑛𝑛 sensitivity coefficients and 𝑽𝑽𝒙𝒙 the (𝑛𝑛 × 𝑛𝑛) variance matrix of the 
𝑛𝑛 input quantities, 𝒙𝒙. This equation accounts for the possible correlation of the input quantities, 
manifested by non-null covariances appearing off-diagonal in 𝑽𝑽𝒙𝒙. 
Typical measuring tasks in coordinate metrology involve multiple measurands at the same 
time. For instance, the measurement of a cylinder involves a localisation point on and an 
orientation unit vector of its axis, and an intrinsic dimensional quantity such as the diameter5. 
The measurands are not a single scalar in this case, rather a vector of 𝑚𝑚 quantities, 𝒚𝒚, and the 
complete description of their uncertainties is an (𝑚𝑚 × 𝑚𝑚) variance matrix, 𝑽𝑽𝒚𝒚. The sensitivity 
coefficients follow this increase in the dimension of the problem: the vector of coefficients 
becomes a (𝑚𝑚 × 𝑛𝑛) sensitivity matrix, 𝑮𝑮𝒚𝒚|𝒙𝒙 and the uncertainty propagation is 

 𝑽𝑽𝒚𝒚 = 𝑮𝑮𝒚𝒚|𝒙𝒙𝑽𝑽𝒙𝒙𝑮𝑮𝒚𝒚|𝒙𝒙
T ,             �𝑮𝑮𝒚𝒚|𝒙𝒙�𝑖𝑖𝑗𝑗 = 𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝑥𝑥𝑗𝑗
 

Usually, multiple geometric elements are involved at the same time with measurands derived 
from their combination. Some geometric features may be involved for the measurand even 
though they are not in the measurand. The typical case is that of datum features: they constrain 
relevant locations and orientations of the measurands but are not part of them. For instance, 
the orthogonality of the median line of a cylinder to a datum plane involves the distances of the 
centres of the nominally-circular sections of the cylinder, to a line orthogonal to the plane. The 
plane orientation plays an essential role in the measurement but is not a measurand. Obviously 
the plane orientation is relevant for the uncertainty but is not explicit in any variance matrix; it 
is rather “hidden” in the sensitivity matrix 𝑮𝑮𝒚𝒚|𝒙𝒙. 

The sensitivity analysis is particularly suited for dealing with such cases. The chain rule of 
derivation enables expressing the overall sensitivity matrix as the product of sensitivity 
matrices relevant for intermediate calculations. In the above example, if 𝒂𝒂 is the unit vector 
normal to the plane, the overall sensitivity matrix can be derived as 𝑮𝑮𝒚𝒚|𝒙𝒙 = 𝑮𝑮𝒚𝒚|𝒂𝒂𝑮𝑮𝒂𝒂|𝒙𝒙, where 𝑮𝑮𝒂𝒂|𝒙𝒙 
is the sensitivity of the plane orientation to the probed points (no involvement of the cylinder) 
and 𝑮𝑮𝒚𝒚|𝒂𝒂 that of the measurands to an orientation (no involvement of the plane): full decoupling 
of the two involved elements is achieved. 
The sensitivity matrix depends only on the problem geometry, the sampling strategy and the 
choice and sequence of mathematical operator to derive the results. In principle, the actual 
geometry and sampling should be considered, with all their imperfections. However, the 
sensitivity is dominated by macroscopic quantities (such as distances between elements and 
extents of elements), whereas their microscopic imperfections are second-order. In conclusion, 
the sensitivity analysis requires detailed prior knowledge of the nominal geometry and 
sampling strategy and of the sequence of computation.  
This knowledge is in fact embodied in the part programme of the measurement task. When 
one is available (for instance developed in a previous similar measurement), the needed 
information is all available and can be derived automatically (at least in principle, when suitable 
software tools are able to). In the most general scenario, no part programme is available. The 
nominal geometry is known, as defined by, e.g., drawings or CAD models. The sampling 
strategy and the computation is not. Deciding on them is a very important task of the 
metrologist’s. The a priori Methods B helps in doing: alternatives are considered, their 
sensitivities are analysed, and one is selected as the best trade-off between small uncertainty 
and low measurement cost. 

                                                 
5 These measurands are the parameters of the parameterisation of the element. A set of standardised 

parametrisations is found in [4] Table 3. 
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4 Structure of this document 
The EUCoM project aimed at developing one Method B. Its conceptual flow is anticipated in 
the project protocol. 
In the course of the project, another method B was found. Both are a priori, that is, based on 
essentially the same or similar prior information on the CMM. Apart from that, the two methods 
are independent to each other and alternative, and exhibit different characteristics as to the 
treatment of data, the equations involved and the needed software. 
For brevity, the two methods are referred to hereafter as Method B1 and B2, respectively: that 
originally foreseen in the project protocol is B1. 
The following two Sections describes methods B1 and B2, respectively. 
Some common conclusions follow at the end. 
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I.1 Outline of this section (Method B1)

The section is organised as follows.

Section I.2 discusses the main elements of the approach based on the method-
ology underpinning the Guide to the Expression of Uncertainty [5], covering:

• what is meant by an a priori method,

• a summary of the GUM approach in terms of a functional relationship
relating measurands and their influence factors, the statistical charac-
terisation of the influence factors in terms of mean and variances, and
how their statistical can be used to provide a statistical characterisa-
tion of the measurands,

• the application of the GUM methodology to CMM measurement to
provide a statistical characterisation of point clouds and features de-
rived from point clouds in terms of a statistical characterisation of the
influence factors

• the influence factors important for CMM measurement discussed in
this section

• how the CMM influence factors are characterised statistically in terms
of statistical parameters, and

• how these statistic parameters can be assigned from prior knowledge.

Section I.3 describes the models for the influence and how uncertainties
associated with the influence factors are propagated through to point clouds.

Section I.4 describes how the uncertainties associated with the influence fac-
tors propagate through to uncertainties associated with length measurement
an how a statement of length measuring capability such as maximum permis-
sible error can be used to guide the assignment of the statistical parameters
for the influence factors.

Section I.5 describes how uncertainties associated with point clouds are
propagated through to features extracted from the point clouds in terms
of sensitivity matrices. The section describes how sensitivity matrices for
least-squares element and surface fitting can be evaluated and how they
can be approximated for standard measurement strategies. The section also

I-2
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provides an analysis of how uncertainties associated with partial features
behave and discusses uncertainty propagation associated with establishing
a datum frame of reference.

Section I.6 gives a brief description of how workpiece form error influences
featured derived from point clouds. Section I.7 discusses how a Monte Carlo
method can be used to evaluate uncertainties associated with derived fea-
tures, particularly those associated with Chebyshev/minimum zone fitting
criteria.

I.1.1 Notation

General notation

Given coordinate data xi, i = 1, 2, . . .m, then

x1:m =



x1

y1

z1

x2
...
ym
zm


, xp:q =



xp
yp
zp
...
xq
yq
zq


, q ≥ p,

i.e., x1:m represents the 3m×1 vector of coordinates in the given order, etc.

Notation associated with statistical characterisation of CMM in-
fluence factors

Table I.1 gives a summary of the notation used in this document relating to
CMM influence factors and associated statistical parameters.

Notation relating to variance matrices associated with coordinate
data

Table I.2 gives a summary of the notation used in this document relating to
variance matrices.

I-3
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Symbol Association, interpretation

MPE Statement of maximum permissible error
A, B Parameters characterising the MPE as a function of distance,

A+ d/B

R Repeatability
σR Standard deviation associated with repeatability

PQ Probe qualification/location effects
σPQ Standard deviation associated with probe qualification effects

S Scale and squareness effects
σS Standard deviation associated with a global scale effect
σS,a Standard deviation associated with independent scale effects

associated with each axis
σQ Standard deviation associated with independent squareness

effects

ET Geometric location errors (local scale and straightness)
σET Standard deviation associated with spatially-correlated geo-

metric location errors
λET Length scale parameter associated with the spatially-

correlated geometric location errors

ER Geometric rotation errors (roll, pitch and yaw)
σER Standard deviation associated with spatially-correlated geo-

metric rotation errors
λER Length scale parameter associated with the spatially-

correlated geometric rotation errors

P Probing effects
σP0 Standard uncertainty in the probe radius
σP Standard deviation associated with spatially-correlated prob-

ing effects
λP Length scale parameter associated with the spatially-

correlated probing effects

Table I.1: Notation associated with CMM influence factors.

I-4
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Symbol Association, interpretation

VA variance matrix associated with quantities labelled ‘A’ due
to all influence factors

VA|B variance matrix associated with quantities labelled ‘A’ due
to influence factors labelled ‘B’

KB variance factor of VB with VB = KBK
>
B

DC diagonal variance factor of VC with VC = DCD
>
C = D2

C

GA|B sensitivity matrix of quantities labelled ‘A’ with respect to
influence factors labelled ‘B’

Table I.2: Notation associated with the variance matrices.

I-5
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I.2 An a priori method based on the GUM method-
ology

I.2.1 Summary of the GUM methodology

The a priori uncertainty evaluation approach described in this report is
based on the methodology described in the Guide to the Expression of Un-
certainty in Measurement, the GUM, [2], specifically GUM Supplement 2 [4]
which deals with multivariate outputs. A feature that distinguishes coordi-
nate metrology from other areas of metrology is the fact that the measurands
are usually multivariate, for example, a set of point coordinates, or are de-
rived from multivariate quantities, e.g., the radius of a cylinder associated
with a set of coordinates. The GUM methodology involves an input-output
model in which the measurand(s) x are described as having a functional re-
lationship x = f(b) on a set of inputs or influence factors b. Any statistical
characterisation of the influence factors b defines a corresponding statisti-
cal characterisation of the outputs x. In particular, if b is associated with
a (multivariate) probability distribution with mean b̂ and variance matrix
VB, the mean x̂ and variance matrix VX associated with x are completely
defined by the functional relationship x = f(b). If f is a nonlinear function
of b, the mean and variance associated with x may be difficult to compute
exactly but can be approximated by linearising f about b̂. If GX|B is1 the
sensitivity matrix of x with respect to b,

GX|B(i, j) =
∂fi
∂bj

then the law of propagation of uncertainty (LPU, [10]) states that x̂ and VX
are approximated by

x̂ ≈ f(b̂), VX ≈ GX|BVBG>X|B, (I.1)

a multivariate version of the well-known formula used in the GUM. The
standard uncertainties u(x) associated x̂ are given by the square roots of
the diagonal elements of VX .

If the inputs b are associated with a multivariate Gaussian distribution2

b ∼ N (b̂, VB),

1The symbol X|B can be read as ‘X given B’.
2The symbol ∼ can be read as ‘is distributed according to’.

I-6
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then the distribution associated with x is approximated by N (x̂, VX). The
LPU is exact for linear functions f and in this case if b is associated with
a Gaussian distribution, x is also associated with the given Gaussian dis-
tribution and no approximation is involved. For measurements that are
associated with a number of influence factors, the distribution N (x̂, VX) is
usually a suitable approximation to the true distribution.

In coordinate metrology, relative accuracies are of the order of 1 part in
105 so that second order effects are of the order of 1 part in 1010 and can
be ignored in almost all applications. This means that the linearisation
of f in (I.1) used to propagate the uncertainty information introduces no
significant approximation error. One significant exception is in extracting
features from point cloud data based on Chebyshev/minimum zone criteria
and related criteria. In this case the functional f relationship is nonlinear
and, more challenging, the first order partial derivatives a not continuous so
that evaluating the partial derivatives of f at one estimate need not be a
good guide to the partial derivatives at a nearby estimate.

Monte Carlo methods, as described in GUM Supplement 1 [3], can be used
for problems for which a linearisation of the functional relationship is not
effective. The concept is simple. If bq, q = 1, . . . ,M , are samples from
the multivariate probability distribution characterising the influence factors
then,

xq = f(bq), q = 1, . . . ,M, (I.2)

are samples from the probability distribution associated with the measur-
ands x. The mean and variance matrix associated with x are estimated
from the mean and variance matrix associated with the sample x1:M .

I.2.2 A GUM methodology applied to CMM measurement

To apply the GUM methodology, requires

• specifying the set of factors b that influence the measurand(s) x,

• establishing the functional relationship of x = f(b) how x depends on
the influence factors b,

• assigning estimates b̂ of the influence factors b and the associated
variance matrix VB, and

I-7
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• evaluating the sensitivity matrix G.

Once these steps have been been completed, the LPU can be used to statis-
tically characterise x in terms of x̂ and VX as in (I.1).

I.2.3 CMM influence factors

This report considers the following CMM measurement influence factors:

• Repeatability effects (R)

• Probe qualification/location effects (PQ)

• Scale and squareness effects (S)

• Kinematic/geometrical errors: straightness errors (ET)

• Kinematic/geometrical errors: angular/rotation errors (ER)

• Probing effects: probe radius, errors depending on probing direction
(P)

The labels in brackets are used consistently in this report to denote the
corresponding influence factor. Temperature effects are assumed to arise via
changes in scale and machine geometry. Hysteresis effects are not covered
in this report. The effects of workpiece form error is considered to some
extent.

I.2.4 Functional relationship between influence factors and
point coordinates and derived features, evaluated sen-
sitivities

The evaluation uncertainties associated with geometric features a derived
from coordinate data x1:m can generally be though of as two stage process,
the first in which a 3m× 3m variance matrix VX associated with the coor-
dinate data x1:m is evaluated, the second stage in which the uncertainties
associated with x1:m are propagated through to those for the features a
derived from x1:m. Hence there are two functional relationships to derive,
the first from influence factors b to point cloud x1:m, the second from point

I-8
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cloud data to derived features. These functional relationships are generally
straightforward to derive and are described in this report for the influence
factors listed above and for features based on fitting an geometric element
or design surface to a point cloud based on a least-squares criterion. Much
of the technical elements of this report is given to deriving these functional
relationships and corresponding sensitivities. All of the calculations are
straightforward and can be implemented in a spreadsheet that supports ba-
sic matrix operations. No optimisation or Monte Carlo sampling is involved.

I.2.5 Statistical characterisation of the influence factors

The a priori nature of the methods described in this report arises in the
the assignment of the statistical characterisation of the influence factors.
All other aspects are more or less defined and follow standard mathemati-
cal/engineering practice. In order for the a priori method to be practical, it
is necessary that the statistical characterisation requires the assignment of
a modest number of parameter values, σ say, and that these values can be
estimated straightforwardly based on information that is likely to be avail-
able, for example the statement of maximum permissible error (MPE) for
measurement of length for the CMM. The MPE statement says that the
difference between estimated distance d̂ derived from CMM measurement
and the true distance d is bounded by a linear function of distance:

|d̂− d| ≤ A+ d/B.

The MPE statement characterises CMM (length measuring) behaviour using
two parameters A and B. The MPE statement can be re-interpreted in terms
of uncertainty u(d) associated with distance measurement,

Ku(d) ≤ A+ d/B, (I.3)

where K (typically K = 2 or K = 3) ensures that the probability of ex-
ceeding an MPE statement is suitably small. Given any point cloud ma-
trix VX = VX(σ) it is very straightforward to evaluate the uncertainty
u(dij) = u(dij |σ) associated3 with the measurement of the distance be-
tween any two points xi and xj and therefore check if the variance matrix
VX(σ) is consistent with the MPE statement. These issues are considered
in detail in section I.4.

3The notation u(d|σ) means the standard uncertainty associated with d, given the
values σ of the statistical parameters.
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The a priori method is being used to estimate the uncertainty contributions
from the various influence factors, not to evaluate or estimate (and correct
for) the influence factors themselves. This means that some of the com-
plexity of error correction can be avoided. Most specific measuring tasks
involve converting a set of measured coordinates to a small number of fea-
ture parameters, such as determining the radius of a cylinder from a set of
point coordinates. The uncertainties associated with the computed param-
eters depends on the uncertainties associated with the point coordinates as
encoded in the associated variance matrix. While the true variance matrix
associated with the point cloud may be difficult to evaluate, a reasonable
approximation can be determined using prior information and this approxi-
mation is likely to be sufficient to estimate uncertainties associated with the
derived features.

MPE implies statistical correlation associated with a point cloud

If the MPE statement is a plausible characterisation of the length measuring
capability of a CMM, then it can be used to guide the assignment of the
statistical parameters used to evaluate VX . The form of the MPE statement
implies that the uncertainty associated with distance measurement has some
dependence on the size of the distance. This fact immediately implies that
the point cloud variance matrix VX is not a diagonal matrix and that uncer-
tainties associated with the coordinates xi are statistically correlated. Such
correlation is to be expected since the point coordinates depend on a number
of common influence factors such as scale and squareness effects. For this
reason, the a priori method described here is based on the full multivari-
ate version of the law of propagation of uncertainty (LPU) summarised by
(I.1). Even if the variance matrix VX associated with the point cloud can
be approximated by a diagonal matrix, the variance matrix VA associated
with the derived features a will be a full matrix and often represents strong
correlation between different estimated parameters.

I.2.6 Main statistical parameters of the a priori method

The implementation of the a priori method described in this report involves
the following main statistical parameters σ = (σR, σPQ, σS , σS,a, σQ)>, σPk =
(σP0,k, σP,k)

> and λ = (λET , λER, λP )> associated with the main influence
factors listed in section I.2.3. The a priori information that can be used
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to assign them is also discussed. Given values for these parameters, the
point cloud matrix VX = VX(σ,σP ,λ) associated with a (proposed) set of
measurements x1:m can be evaluated directly propagated through to any
derived features.

Repeatability (R)

Repeatability is characterised by one statistical parameter σR which rep-
resents the standard deviation of statistically independent random effects
associated with each coordinate measurements. The standard deviation
represents the likely variation in measured point coordinates if the same
measurements were repeated under the same conditions. Repeatability con-
tributes directly to the estimate of A in an MPE statement but has no
distance-dependent component and does not contribute to B. A prior esti-
mate of σR can be derived from repeatability experiments or estimated from
the MPE statement. In order to be consistent with the MPE, σR ≤ A/K
where K as in (I.3).

Repeatability influences all derived features including position, size and form
error. The influence of repeatability on estimates of position and size are
reduced as more measurements on an artefact are taken.

Probe location/qualification effects (PQ)

Probe qualification effects are characterised by one statistical parameter
σPQ which represents the standard deviation of statistically independent
random effects associated with estimation of the probe offset vector p. A
procedure for estimating σPQ for probe qualification experiments is given
in section I.3.4. Probe qualification contributes directly to the estimate
of A in an MPE statement but has no distance-dependent component and
does not contribute to B. Probe qualification effects can contribute to all
derived features including position and, if multiple probes are used, size and
form error. If only one probe offset is used then probe qualification effects
do not make a significant contribution to derived features. The influence
of probe qualification effects on derived features are not reduced as more
measurements on an artefact are taken.
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Scale and squareness effects (S)

Scale and squareness effects are characterised by three statistical parameters
σS , σS,a and σQ. The first, σS , represents the standard deviation associated
with a global scale effect, the second σS,a, represents the standard deviation
associated with independent scale effects associated with each axis, while σQ
represents the standard deviation associated with independent squareness
effects.

Scale and squareness effects contribute directly to the estimate of B in an
MPE statement but not to A. Scale and squareness effects influence all
derived features including position, size and form error. The global scale
effect makes negligible contribution to form error. Scale and squareness
effects model non-isotropic CMM behaviour since squareness effects only in-
fluence length measurements that are not aligned with an axis. Section I.4.8
considers how these statistical parameters can be estimated from an MPE
statement and how they are constrained by the value of B.

Geometric error, location effects (ET)

Geometric errors associated with location effects correspond to local scale
and straightness effects for each axis, similar to those that appear in a CMM
kinematic error model [32]. It is assumed that the CMM has already been
corrected for kinematic errors and the location effects arise from the residual,
uncorrected, kinematic errors that arise due to changes in the measuring
environment, for example. The fact that the location effects correspond to
residual, uncorrected errors means that there is no requirement to reflect
the axis-upon-axis build up of errors that are present in standard kinematic
error models.

The location effects are associated with two statistical parameters σET and
λET . The first, σET , represents the standard deviation associated with
all local scale and straightness effects. The second, λET , is a length scale
parameter that controls the smoothness of the model for the location effects.
If λET = 0, then the effects are modelled as independent random effects
and make the same type of uncertainty contribution as repeatability effects.
If λET is of the order of the length Lmax of the largest diagonal of the
CMM, then the effects vary approximately linearly over the working volume
and make a contribution similar to scale and squareness effects. A value
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of λET = Lmax/5 is appropriate in the absence of other information and
models scale and straightness errors over short to medium length scales.

Spatially-correlated location effects contribute to both A and B in an MPE
statement, with the balance depending of the value of λET , with smaller val-
ues of λET associated with a bigger contribution to A. Spatially-correlated
location effects contribute to all derived features, including position, size
and form error. The value of σET can be estimated from measurements
of calibrated artefacts with low form errors such as straight edges or ring
gauges, or assigned using expert judgement.

Geometric error, rotation effects (ER)

Geometric errors associated with rotation effects correspond to local roll,
pitch and yaw errors for each axis, similar to those that appear in a CMM
kinematic error model. It is assumed that the CMM has has already been
corrected for kinematic errors and the rotation effects arise from the residual,
uncorrected, kinematic errors that arise due to changes in the measuring
environment, for example. The rotation effects are associated with two
statistical parameters σER and λER. The first, σER represents the standard
deviation associated with all local rotational angles modelling the non-ideal
rotational motion of the CMM. The second, λER, is a length scale parameter
that controls the smoothness of the model for the rotation effects. If λER =
0, then the effects are modelled as independent random effects and make
the same type of uncertainty contribution as repeatability effects. If λER is
of the order of the length Lmax of the largest diagonal of the CMM, then
the effects are variance approximately linearly over the working volume and
make a contribution similar to scale and squareness effects. A value of
λET = Lmax/5 is appropriate in the absence of other information. If only
one probe is used, rotation effects make a similar contribution as location
effects.

Spatially-correlated rotation effects contribute to both A and B in an MPE
statement, with the balance depending of the value of λER, with smaller val-
ues of λER associated with a bigger contribution to A. Spatially-correlated
rotation effects contribute to all derived features, including position, size
and form error. The value of σER can be estimated from measurements us-
ing an autocollimator or from measurements of calibrated artefacts with low
form errors such as straight edges or ring gauges, or assigned using expert
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judgement.

Probing effects (P)

The a priori method includes probe radius effects and probing effects that
depend on probing direction. The probe radius effects are characterised by
σP0 that represents the standard uncertainty associated with the probe ra-
dius. The probing effects that depend on probing direction are associated
with two parameters. The first, σP , represents the standard uncertainty
associated with spatially-correlated probing effects, while the second, λP ,
gives the spatial correlation length (relative to distances on the unit sphere)
associated with the probing effects as a function of probing direction. The
spatial correlation means that the probing effects are the same or similar if
the probing directions are the same or similar (and cancel out for unidirec-
tional length measurement) but that probing directions that are significantly
different (and in particular in opposite directions) are uncorrelated (and do
not cancel out for bi-directional length measurement).

Probing effects will be likely be different for different probe offsets and it
may be advisable to assign different values of σP0 and σP for different probe
offsets. A value of λP = 0.5 is appropriate in the absence of other informa-
tion.

Probing effects contribute mainly to A in an MPE statement. Probe ra-
dius effects contribute to the size of derived features while probing effects
contribute mainly to the form error associated with derived features.

I.2.7 Assigning statistical parameters based on an MPE state-
ment

The statistical parameters described above (σ, σP and λ) can be related to
the MPE statement through the evaluation of the uncertainties associated
with distances between points. The relationship enables the MPE statement
to be used to derive plausible values for the statistical parameters and rule
out choices of parameter values that are not consistent with the MPE state-
ment. Such an approach is described in section I.4.8 so that the uncertainties
associated with derived features generated from measurements x1:m can be
estimated on the basis of an MPE statement alone. However, there are po-
tentially significant limitations in basing estimating CMM uncertainties on
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the basis of length measuring capability alone; see section I.2.9 below.

I.2.8 Assigning statistical parameters based on a posteriori
information

Measurements of the same artefact in a number of different positions can be
used to generate estimates of the repeatability component of CMM uncer-
tainty and the component arising from geometric errors and other influence
factors. The approach described in [39, 40] uses an analysis of variance
methodology [36] to separate out and evaluate the contribution from re-
peatability effects and geometry effects. These estimates can be used to
derive plausible values for the statistical parameters following similar prin-
ciples to that for estimating them from an MPE statement.

I.2.9 Length measuring capability and three-dimensional mea-
surement capability

This section illustrates the fact that CMM behaviour is not characterised by
length measurement capability nor by its behaviour when measuring with
a single probe. The a priori method described in this report attempts to
characterise fully the three-dimensional nature of CMM measurement with
multiple probes.

Length measuring capability does not define three dimensional
measurement capability

The behaviour of a CMM cannot be characterised purely in terms of its
length measuring capability, even if the length measuring capability is known
completely. In general, length measurement capability provides only limited
information about other derived features such as cylindricity, etc. In sec-
tion I.4.3, it is shown how a combination of independent axes scale effects
along with squareness effects provide exactly the same length measuring
capability as that arising from a single global scale effect. Therefore, it is
possible that two CMMs with exactly the same length measurement capa-
bility can perform significantly differently on other measurement tasks, such
as the measurement of a ball plate [15]. It follows that an MPE statement
can only be used to provide a plausible characterisation of CMM behaviour
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and therefore plausible point cloud variance matrices. In deriving estimates
of the statistical parameters described above in section I.2.6 from an MPE
statement, there is a set of possible assignments that are potentially equally
consistent with the MPE statement and it is as desirable to choose a set
that is likely to be representative of a large class of CMMs. For example, a
model in which there are independent axis scale errors and squareness errors
covers a far larger class of CMM behaviours than a model for which there
is only a single global scale effect.4

Measurement with a single probe does not define three dimen-
sional measurement capability

The following example shows that completely characterising the behaviour of
a CMM measurement using a single probe offset does not characterise CMM
measurements using multiple measurements. In particular, experiments to
estimate the kinematic errors of a CMM must involve multiple probe offsets
[8].

Suppose a CMM has an error behaviour determined by roll about each axis
that depends linearly on the length of travel along the axis. This behaviour
can be modelled as

x̃ = x+R(κx)p,

where x is the true position of (a fixed point on) the probe assembly, p is the
probe offset (from the fixed point) and x̃ are the CMM coordinate measure-
ments (scale readings), R is the linearised rotation matrix corresponding to
roll about each axis given by

R(x) =

 1 −z y
z 1 −x
−y x 1

 ,
and κ ≈ 0 is a parameter determining the rate of roll. Then

x̃ = x+R(κx)p = x+ p+ κx× p = R(−κp)x+ p, (I.4)

where x× p is the vector cross-product of x with p. The relationship (I.4)
shows that measurements of an artefact using a CMM with isotropic axis

4A potentially useful approach to determining a set of representative values of the
statistical parameters would be to find, amongst all values consistent with the MPE state-
ment, the values that maximise some measure of entropy [34] (or randomness) associated
with a point cloud variance matrix
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roll, i.e., having the same rate κ of roll along each axis, are the exactly same
as those of the same artefact rotated by R(−κp) by a CMM with no axis roll
(to first order). This equivalence means that, irrespective of measurement
strategy and calibration information, a CMM cannot be completely charac-
terised from the multiple measurement of calibrated artefacts such as ball
plates and step gauges unless measurements are taken of the same artefact
in the same position using more than one probe offset. In general, at least
three probe offsets are required; by analogy, the location of three points are
needed to track the position of a moving rigid body.
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I.3 Point cloud uncertainty evaluation for CMM
measurement

This section describes of models associated with the various influence factors
that affect CMM behaviour listed in section I.2.3 and how uncertainties
associated with these factors can be propagated through to point cloud
variance matrices using the law of propagation of uncertainty (I.1).

I.3.1 A general model of CMM measurement

A general model of CMM measurement has the form

xi = x∗i + ei + εi, εi ∈ N (0, σ2
i I) (I.5)

where xi is the measured coordinates, x∗i is the true point coordinates, ei
is a systematic effect and εi is a random effect, i = 1, . . . ,m. The sys-
tematic effect ei is taken to be approximately constant over the duration
of a measurement of a part while the random effect εi represents (a sum
of) effects that change over a very short timescale, effectively modelling the
repeatability component of the CMM.

We generalise the model in (I.5) to cater for the possibility that the mea-
surements may be subject to a number of independent systematic effects
that combine additively to influence the measurement result, e.g.,

xi = x∗i + ei,B + ei,C + ei,D + εi. (I.6)

We assume that the behaviour of the systematic effects can be described by a
statistical model which allows us to calculate (or estimate) the contribution
to the variance matrix VX associated with x1:m from the various effects. We
denote by VX|B, the variance contribution arising from e1:m,B, etc. For the
model in (I.5), the variance matrix VX can be decomposed as

VX = VX|E + VX|R,

where VX|E is the variance contribution from the effects e1:m. For the model
in (I.6), the variance matrix VX can be decomposed as

VX = VX|B + VX|C + VX|D + VX|R.

In both cases, we denote by VX|R the diagonal variance matrix representing
the variance contribution from the random effects ε1:m.
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I.3.2 Propagation of variances

The law of propagation of uncertainty, the basis of the GUM [2], in its
multivariate setting [7, 4] describes how uncertainties associated with the
measured coordinates in (I.6) can be evaluated on the basis of uncertainties
associated with the systematic and random effects. Suppose effects ei,B =
ei(b), i = 1, . . . ,m, are specified by nB parameters b = (b1, . . . , bnB )>, and
that a statistical model for b specifies the nB × nB variance matrix VB
associated with b. If GX|B is the 3m × nB sensitivity matrix of x1:m with
respect to b constructed from 3× nB matrices

GX|B,i =
∂xi

∂b>
,

then
VX|B = GX|BVBG

>
X|B.

If VB can be factored as VB = KBK
>
B where KB is an nP × pB matrix (usu-

ally pB = nB), for example, from an eigenvalue decomposition or Cholesky
decomposition [1, 26], then VX|B can be factored as

VX|B = KX|BK
>
X|B, KX|B = GX|BKB.

If VB is a diagonal matrix, then we factor VB as VB = D2
B, where DB is also a

diagonal matrix. The jth diagonal element dB,j is the standard uncertainty
associated with the effect bj .

The role of the sensitivity matrix GX|B can be explained as follows. If the
parameters b describing the systematic effects are perturbed by ∆b, then
the resulting perturbation on e1:m, and hence x1:m, is given by ∆x1:m =
GX|B∆b, to first order.

Often we are interested in quantities derived from a set of point coordinates.
As a consequence of the chain rule in calculus, if a = (a1, . . . , anA)> depends
on x1:m and GA,X is the nA × 3m sensitivity matrix of a with respect to
x1:m then the nA×nB sensitivity matrix GA|B of A with respect to influence
factors b is given by

GA|B = GA|XGX|B,

and the nA × nA variance matrix VA|B describing the variance contribution
to a arising from factors b is given by

VA|B = GA|BVBG
>
A|B = KA|BK

>
A|B, KA|B = GA|BKB.
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If the systematic effects b are perturbed by ∆b, then the derived parameters
a are perturbed by ∆a = GA|B∆b, to first order.

An important example of quantities a derived from point coordinates x1:m

is where a are parameters associated with a Gaussian associated feature to
x1:m, e.g., the least squares best-fit cylinder to a data set; see section I.5.2.

I.3.3 Random/repeatability component (R)

The simplest model of CMM behaviour is to consider only a random re-
peatability component constant throughout the working volume:

xi = x∗i + εi, εi ∈ N (0, σ2
RI). (I.7)

This model has only one statistical (hyper-)parameter, σR. The variance
matrix VX associated with a set of measured coordinates xI is simply

VX = VR = σ2
RI = D2

R, DR = σRI,

where represents the 3m × 3m identity matrix with ones on the diagonal
and zeros elsewhere. Despite its simplicity, this model is useful to deter-
mine how the uncertainties associated with geometric features depend on
representative estimates of the CMM accuracy as represented by σR.

The uncertainty u(dij) associated with the distance dij = ‖xi−xj‖ is given
by

u2(dij) = 2σ2
R,

and is independent of the length of the distance dij .

I.3.4 Probe qualification effects (PQ)

For error models with an explicit dependence on the probe offset pk, the fact
that the probe configuration geometry is usually determined in probe qual-
ification experiments [?] means that there will be uncertainties associated
with estimates of the offsets. If xi is a measurement using the kth probe,
then the uncertainty contribution arising from the probe qualification can
be modelled as

xi = x∗i + pk + ePQ,k + εi, ePQ,k ∈ N (0, σ2
PQ,kI), (I.8)
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where pk is the calibrated probe offset vector for the kth probe and ePQ,k
models the difference between the actual probe offset and its calibrated
value, k = 1, . . . , nP . An important feature of the model is that all mea-
surements with the kth probe are associated with the same systematic effect
ePQ,k. The variance contribution associated with probe qualification is given
by

VX|PQ = GX|PQVPQG
>
X|PQ

where VX|PQ is the 3nP×3nP variance matrix associated with the systematic
effects ePQ,k and GX|PQ is the 3m × 3nP sensitivity matrix. The variance
matrix VPQ is a diagonal matrix with the 3 × 3 matrix σ2

PQ,kI in the kth
diagonal block. If the ith measurement is associated with the kth probe,
then

GX|PQ(3i− 2 : 3i, 3k − 2 : 3k) = I

the 3×3 identity matrix, and all other elements in these three rows are zero.

Estimating the variance associated with probe qualification effects

[This section needs some references]

Probe qualification according to ISO XXX involves measuring a reference
sphere with a number of probe offsets pk and for each probe estimating the
centre of the sphere, yielding estimates ck, k = 1, . . . , nP . A measure of the
spread of ck provides an estimate of the uncertainty contribution from probe
qualification effects. One measure specified by ISO XXX is the diameter
DMCS of the minimum circumscribing sphere. Calculating the minimum
circumscribing sphere to data can be posed as an optimisation problem to
minimise a nonlinear function subject to linear inequality constraints. Such
problems can be solved using standard optimisation optimisation techniques
[24] but these algorithms are not entirely straightforward to implement. An
alternative measure [?] is to use the maximum pairwise distance

DMP = max
k1,k2
‖ck1 − ck2‖.

If nPQ = 2, then DMP = DMCS ; if nPQ = 3 then DMP ≥
√

3/4DMCS ≈
0.87DMCS with equality given by three points on an equilateral triangle,
and for nPQ ≥ 4, dMP ≥

√
2/3dMCS ≈ 0.82DMCS with equality given by

points on the corners of a tetrahedron. Thus, in all cases

DMP ≥ 0.82DMCS .
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We now describe a Bayesian approach for assessing the uncertainty contri-
bution associated with probe qualification. It based on the model

ck ∈ N (c, φ−1
PQI), φPQ = 1/σ2

PQ, k = 1, . . . , nP ,

where the parameter φ = 1/σ2
PQ represents the σPQ in the model5. The

model is such that the posterior distributions for c and φ can be determined
analytically [23]. Given non-informative prior p(c) ∝ 1 for c and a Gamma
prior

φPQ ∼ G(n0/2, n0σ
2
PQ,0/2),

then the posterior distribution for φPQ|{ck} is the Gamma distribution
G(n̄/2, n̄σ̄2

PQ/2) where

n̄ = n0 + 3nP − 3, σ̄2
PQ =

n0σ
2
PQ,0 + (3nP − 3)σ̂2

n̄
,

σ̂2 =
1

3nP − 3

nP∑
k=1

(ck − c̄)>(c− c̄),

and

c̄ =
1

nP

nP∑
k=1

ck.

It is seen that σ̄2
PQ is a weighted average of the prior estimate σ2

PQ,0 and
the estimate σ̂ of the standard deviation of the residuals associated with
the estimate c̄, the mean of {ck}. In this way, results from previous but
similar probe qualification experiments can be incorporated into a current
experiment. The quantity σ̄PQ can be taken as an estimate of σPQ. We
note that it is always defined if nP ≥ 2. If nP = 1, then no new information
about σPQ is generated.

I.3.5 Scale and squareness effects (S)

Scale and squareness effects are special cases of a class of models in which
the systematic effects in (I.5) are taken to be functions ei = e(xi, b) of
location x and additional parameters b = (b1, . . . , bp)

> that model some
aspect of CMM behaviour. If VS is a prior assignment of the p× p variance

5Working with φ rather than σPQ leads to simpler expressions for the statistical dis-
tributions involved.
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matrix associated with b and GX|S is the matrix 3m × p of sensitivities of
ei, i = 1, . . . ,m, with respect to b, then the variance contribution of b to
the variance associated with x1:m is given by

VX|E = GX|SVSG
>
X|S .

From practical experience, it is well known that scale and squareness effects
are a a major component of CMM behaviour. The model below incorporates
scale effects and three squareness effects through

xi = B(b)x∗i + εi. (I.9)

where

B(b) =

 (1 + baa + bxx) bxy bxz
0 (1 + baa + byy) byz
0 0 (1 + baa + bzz)


depends on effects b = (baa, bxx, byy, bzz, bxy, bxz, byz)

>. The term baa models
a global scale effect while bxx, byy and bzz model scale effects for each axis
and bxy, bxz and byz model the squareness effects. The 3m × 7 sensitivity
matrix GX|S for this model is assembled from 3× 7 matrices of the form

G(x∗i ) =

 x∗i x∗i 0 0 y∗i z∗i 0
y∗i 0 y∗i 0 0 0 z∗i
z∗i 0 0 z∗i 0 0 0

 . (I.10)

In practice, x∗i is unknown but can be approximated accurately by the mea-
sured coordinate xi and the sensitivity matrix is approximated by

Gi = G(xi) =

 xi xi 0 0 yi zi 0
yi 0 yi 0 0 0 zi
zi 0 0 zi 0 0 0

 . (I.11)

The model is completed by specifying the variance matrix VB associated
with the scale and squareness effects, e.g.,

VB =



σ2
S 0 0 0 0 0 0
0 σ2

S,x 0 0 0 0 0

0 0 σ2
S,y 0 0 0 0

0 0 0 σ2
S,z 0 0 0

0 0 0 0 σ2
Q 0 0

0 0 0 0 0 σ2
Q 0

0 0 0 0 0 0 σ2
Q


. (I.12)
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If we assume that the individual axis scale effects are associated with the
same variance so that σ2

S,x = σ2
S,y = σ2

S,z = σ2
S,a, the model is associated

with four statistical hyper-parameters σ = (σS , σS,a, σQ, σR)>. Given a data
point xi, the variance matrix Vxi = Vxi(σ) due to scale and squareness
effects is given by

Vxi = σ2
Sxix

>
i +

 x2
iσ

2
S,a + (y2

i + z2
i )σ2

Q 0 0

0 y2
i σ

2
S,a + z2

i σ
2
Q 0

0 0 z2
i σ

2
S,a

 .
For a working volume of [−L,L]3, the maximum variance in a coordinate of
a point is given by L2(σ2

S + σ2
S,a + 2σ2

Q). This maximum can be compared
with statements of maximum permissible error.

Over modest working volumes6 over which straightness and rotational effects
are not significant, the scale and squareness model is a useful approximation.
For this model, the variance matrix VX associated with a set of coordinates
is given by

VX = GX|SVSG
>
X|S + σ2

RI, (I.13)

where GX|S is the 3m× 7 sensitivity matrix constructed from Gi defined as
in (I.11) and VS typically has the form in (I.12).

Scale and squareness effects for multiple probe configurations

For measurements involving multiple probe offsets pk, k = 1, . . . , nP , the
measured coordinates xi are related to the true point coordinates x∗i through
a model of the form

xi = B(b)x∗i + pk(i) + εi.

For this model, the sensitivity of xi with respect to b is approximated by

Gi = G(xi − pk(i))

with G defined as in (I.10).

6See section I.3.9 for an extension of this model more appropriate for larger working
volumes.

I-24



EUCoM D2 Report A Priori (type B) evaluation Method B1

Scale and squareness effects in two dimensions

In two dimensions, the model has the form

xi =

[
(1 + baa + bxx) bxy

0 (1 + baa + byy)

]
x∗i + εi. (I.14)

depending on effects b = (baa, bxx, byy, bxy>. The 2m× 4 sensitivity matrix
GX|B for this model is assembled from 2× 4 matrices of the form

Gi =

[
xi xi 0 yi
yi 0 yi 0

]
, (I.15)

variance matrix VB associated with the scale and squareness effects typically
of the form

VB =


σ2
S 0 0 0
0 σ2

S,x 0 0

0 0 σ2
S,y 0

0 0 0 σ2
Q

 . (I.16)

I.3.6 Kinematic error model

The kinematic error model for a CMM [32, 41] involves firstly the specifica-
tion of 6 error functions associated with the 6 degrees of freedom motion of
a rigid body along an axis, e.g., (exx(x), exy, exz(x), rxx(x), rxy(x), rxz(x))>,
where exx models the scale error along the axis, exy the straightness error
in the xy-plane, and rxx is the rotation about the x-axis, in this case, roll.
Thus there is a scale error function, two straightness functions and three
rotation functions corresponding to roll, pitch and yaw. There are six such
functions associated with each axis, 18 in all, sometimes augmented by 3
scalar squareness parameters, depending on the convention for specifying
the straightness error functions. These error functions are usually modelled
in terms of empirical functions such as polynomials or splines, the coefficients
of which are collectively represented by parameter vector b. The combined
contribution of these 18 + 3 errors to the CMM measurement can be written
as

xi = x∗i + e(x∗i , b) +R(x∗i , b)p+ εi (I.17)

involving a translation component e(x∗i , b) and a component R(x∗i , b) mod-
elling angular errors where R is a rotation matrix depending on b and lo-
cation x∗. The rotational component also involves the probe offset p, the
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vector pointing from the centre of rotation of the probe housing to the probe
tip centre. The explicit dependence on the probe offset allows different probe
configurations to be modelled using the same kinematic error functions.

Estimates of the function coefficients b along with their associated variance
matrix can be determined from repeated measurements of calibrated arte-
facts such as ball or hole plates [9, 12, 31].

If VB is the variance matrix associated with b (derived from a ball plate
exercise or otherwise) and GX|B is the sensitivity matrix of x1:m with respect
to b, then the variance matrix associated with x1:m is given by

VX = GX|BVBG
>
X|B.

The full kinematic error model and its use in generating variance matrices is
very much a specialist undertaking and perhaps not suitable for developing
a priori methods. Typically, each error function is defined in terms of 5
or so parameters, e.g., polynomial coefficients, so that the complete error
model involves of the order of 100 parameters b. Consequently, the assigning
the associated variance matrix VB involves estimating of the order of 104

elements. However, the kinematic error model can be used to assess the
ability of simpler a priori methods to capture the uncertainty characteristics
due to non-ideal geometry.

I.3.7 Gaussian process models incorporating spatial correla-
tion

Gaussian process (GP) models [11, 38] can be used to develop empirical
models of behaviour that do not explicitly involve sets of basis functions
such as polynomials or splines. Spatial or temporal correlation associated
with data points (xi, ei) takes the form

corr(e, e′) = k(x,x′|σ)

where k is a correlation kernel depending on statistical parameters σ. Often
k depends on x and x′ through ‖x− x′‖, e.g.

cov(e, e′) = k(x,x′) = σ2
E exp{−‖x− x′‖2/λ2

E}. (I.18)

The strength of the correlation between e and e′ dependence to the distance
between x and x′: the closer x is to x′, relative to σ2, the stronger the
correlation between e and e′.
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MPE and spatial correlation

The use of spatially-correlated error models can be motivated in terms of
consequences of the statement of maximum permissible error (MPE) in mea-
suring length. In measuring length along a single axis, say the x-axis, sup-
pose the basic statistical model for the measurement of two points is

x1 = x∗1 + e1 + ε1, x2 = x∗2 + e2 + ε2,

with
e1, e2 ∈ N (0, σ2

E), ε1, ε2 ∈ N (0, σ2
R).

The MPE statement implies that the measured length d̂12 is related to the
true length d12 according to

|d̂12 − d12| ≤ A+ d12/B.

The MPE implies

|e2 − e1 + ε2 − ε1| ≤ A+ d12/B

so that 2σ2
R ≤ A2, and for σR � σE ,

e1 − (A+ d12/B) ≤ e2 ≤ e1 + (A+ d12/B),

i.e., the similarity of e1 and e2 depends on the spatial separation d12.

We can also use a model of the form

x = x∗ + e(x∗) + ε ≈ x∗ + e(x) + ε, ε ∈ N (0, σ2
R)

where e(x) is an error function with |e(x)| ≤ 2σE that encodes the local
scale error. (The same concept can be applied to straightness errors, etc.)
The MPE implies

|e(x2)− e(x1) + ε2 − ε1| ≤ A+ |x2 − x1|/B

so for σR � σE and x1 6= x2,∣∣∣∣e(x2)− e(x1)

x2 − x1

∣∣∣∣ ≤ A

|x2 − x1|
+

1

B
.

In other words, the slope of the error function e(x) cannot be too large
imposing some measure of smoothness on the error function e(x) in order to
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be consistent with the MPE statement. From this point of view, in the MPE
statement, A quantifies effects over short length scales, while d/B controls
the size and smoothness of effects over longer length scales.

Figures I.1–I.4 give examples of spatially-correlated error functions gen-
erated using the correlation kernel in (I.18) with σE = 0.005 mm and
λE = 1000 mm, 500 mm, 200 mm and 100 mm

Figure I.1: Examples of spatially-correlated error functions generated using
the correlation kernel in (I.18) with σE = 0.005 mm and λE = 1000 mm.

A GP model can be used to supplement a parametric model e(b) for the
systematic effects, e.g., a scale and squareness error model considered in
section I.3.5, in which the role of the GP model is to simulate behaviour
not captured by the parametric model, such as uncorrected kinematic errors
[17, 30]. The significant advantage of GP models for an a priori method
is that the GP model can mimic the behaviour of empirical models in a
non-parametric way and can be defined by a small number of statistical
parameters. The point cloud variance matrices VX are constructed from
the point cloud x1:m itself along with a few statistical parameters. In the
models below, the geometric location errors, rotational errors and probing
errors can each be modelled by specifying only two statistical parameters
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Figure I.2: As figure I.1 but with λE = 500 mm.

each. By contrast, kinematic error models, section I.3.6, typically involve
100 or so parameters.

GP models for location errors (ET)

We can apply a GP model for CMM behaviour as follows with

xi = x∗i + ei + εi, (I.19)

where the systematic effects are spatially (and sometimes temporally) corre-
lated with the with the systematic effects ei spatially correlated. In general,
the covariance applies only to the same coordinates, with the x-, y- and
z-coordinates of e mutually, independent. The covariance with ex with e′x
could be modelled as

cov(ex, e
′
x) = k(x,x′|σx) = σ2

ET,x exp
{
−‖x− x′‖2/λ2

ET,x

}
, (I.20)

for example, where λET,x defines the length scale for the correlation in the
x-coordinate7. Note that in this model, there the strength of the correlation

7The ‘E’ and ‘T’ in ’ET’ are meant to represent the error that acts translationally.
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Figure I.3: As figure I.1 but with λE = 200 mm.

in the effects ex depends on the distance ‖x − x′| in 3D, not the distance
along the x-axis.

Let D be the m×m matrix of distances with

Dij = ‖xi − xj‖.

The variance contribution VXT from e1:m to the x-coordinates of xi:m is
given by

VXT,x = σ2
ET,x exp

{
−D2/λ2

ET,x

}
where the calculations associated with D are made element-wise. The con-
tribution to the y- and z-components are of exactly the same form. The
matrix VXT is assembled from VXT,x VXT,y and VXT,z, with all other el-
ements zeros since we assume that the systematic effects associated with
the x-coordinates are independent from those associated with the y- and
z-coordinates8.

8We assume that the GP model relates to uncorrected kinematic errors that are not
likely to have a significant correlation between axes, even if the kinematic errors themselves
are likely to produce such correlation. While the GP model assumes there is no inter-
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Figure I.4: As figure I.1 but with λE = 100 mm.

If it can be assumed that the systematic effects along each axis have the
same behaviour, so that σET,x = σET,y = σET,z = σET , etc., then the model
is specified by three statistical hyper-parameters σ = (σET , λET , σR)>. The
variance associated with any coordinate is σ2

ET . This variance can be com-
pared with statements of maximum permissible error.

GP models for location errors incorporating multiple probes

Suppose that the point cloud x1:m is gathered using multiple probes with
offsets pk, k = 1, . . . , nP . The measured coordinates xi are related to the
true point coordinates x∗i through a model of the form

xi = x∗i + ei + pk(i) + εi,

where pk(i) denotes the probe configuration associated with the ith measure-
ment, etc. For this case, it is important to note that the spatial correlation

axes correlation, the GP model will model successfully behaviour that does have such
correlation.
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is dependent on ‖x∗i −x∗j‖, not ‖xi−xj‖. For different probe configurations
we have

‖x∗i − x∗j‖
.
= ‖(xi − pk(i))− (xj − pk(j))‖.

Similar considerations apply to the model for scale and squareness errors
with multiple probe offsets, section I.3.5, and for GP models for rotation
errors, section I.3.7, below.

Gaussian process model for rotation errors

The GP models in section I.3.7 used, perhaps, with a simple parametric error
model can simulate a wide range of plausible CMM behaviour but it relates
only to one probing configuration and do not, without modification, allow us
to evaluate the uncertainties associated with different probe configurations.
An extension of the model is to use GP models to model both the location
and rotation errors:

xi = x∗i + ei +R(αi)p+ εi, (I.21)

where αi = (αi,x, αi,y, αi,z)
> represents three spatially correlated rotation

errors acting on the probe offset vector p through the rotation matrix

R(αi) = Rz(αi,z)Ry(αi,y)Rx(αi,x), (I.22)

the product of rotations about each of the three coordinate axes:

Rx(αx) =

 1 0 0
0 cosαx − sinαx
0 sinαx cosαx

 , Ry(αy) =

 cosαy 0 sinαy
0 1 0

− sinαy 0 cosαy

 ,
and

Rz(αz) =

 cosαz − sinαz 0
sinαz cosαz 0

0 0 1

 .
We assume that the rotational effects about one axis are independent from
the rotational effects about the other two axes, but other more general
approaches are possible. For measurements involving multiple probes, the
degree of spatial correlation associated with αi and αj depends on

‖x∗i − x∗j‖
.
= ‖(xi − pk(i))− (xj − pk(j))‖.
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If the rotational errors are similar along each axis, then the GP model for
the rotational errors is specified by two statistical hyper-parameters σER,
and λER, say9.

The variance associated with location errors for any coordinate is σ2
ET . If the

maximum probe length is P , then the maximum variance associated with
rotational effects for a coordinate is given by P 2σ2

ER. Hence the maximum
variance associated with location and rotation errors for a coordinate is
given by σ2

ET + P 2σ2
ER. This maximum can be compared with statements

of maximum permissible error.

We note that if the variance matrix associated with α = (αx, αy, αz)
> with

α = 0 is Vα, then the variance matrix Vp associated with R(α)p, with
R(α) as in (I.22), is given by GVαG

> where

G =

 0 pz −py
−pz 0 px
py −px 0

 , p = (px, py, pz)
>. (I.23)

As for the case of the kinematic error model, the explicit dependence on the
probe offset allows different probe configurations to be modelled.

If VAR is the 3m × 3m variance matrix associated with α1:m determined
from the correlation kernel (or otherwise), then the variance contribution
VXR to the measurements x1:m is given by

VXR = GXRVARG
>
XR,

where GXR is a 3m × 3m block-diagonal matrix. If the ith measurement
is associated with the kth probe, then the 3 × 3 ith diagonal is equal to
Gk, where Gk is constructed from pk as in (I.23). Although the model
fot the rotation angles about the three axes are mutually independent, the
sensitivity matrices GXR in general will introduce correlation between the
effects applied to the x-, y- and z-coordinates.

Rotational errors and probe qualification effects

The model for rotational errors can be combined with that for probe qual-
ification errors as follows. The model in (I.21) is a simplification of the

9The ‘E’ and ‘R’ in ’ER’ are meant to represent the error that due to rotation effects.
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following model. Firstly, we have

s∗i = x∗i +R(α∗)p∗

relating a point s∗ on a surface to the point in the CMM working volume
x∗i offset from s∗i by the true probe offset p∗ rotated by R(α∗). The mea-
surements xi of x∗i are modelled as

xi = x∗i + ei + εi,

and s∗i is estimated by

si = xi + p,

where p is the estimate of the probe offset determined in a probe qualification
experiment. Combining these two equations, we have

si = x∗i + ei + εi + p,

= s∗i −R(α∗)p∗ + p+ ei + εi,

which relates the true point on the surface to its estimate. For α∗ near zero
and p near p∗

p−R(α∗)p∗ ≈ p− p∗ −

 0 −α∗z α∗y
α∗z 0 α∗x
−α∗y α∗x 0

p
showing that separation in to probe qualification effects and rotational er-
rors.

Isotropic models for spatially correlated rotational errors

If the variances spatial correlation lengths are the same for each axis and
equal to σ2

ER and λER, respectively, then the variance matrix VXR is con-
structed from 3× 3 blocks of the form

Vij = σ2
ER

(
exp−d

2
ij/λ

2
ER

)
Gk(i)G

>
k(j), (I.24)

where Gk is defined as in (I.23).
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I.3.8 Gaussian process model for probing effects

The operation of the probe system will also to make a variance contribution.
While the CMM geometric errors are likely to vary smoothly with location,
the probing errors are likely to vary smoothly with probing direction where
the probing direction is usually designed to be normal to the surface being
probed. We can augment the model in (I.19) to one of the form

xi = x∗i + ei + (eP,0 + eP,i)ni + εi, (I.25)

where eP,0 is a fixed offset representing the the uncertainty in the estimate
of the probe radius, eP,i is a spatially correlated systematic effect associated
with probing and ni is the unit normal probing direction. The correla-
tion between effects eP,i and eP,j depends the spatial separation ‖ni − nj‖
if both measurements are made using the same probe. We assume that
probing effects associated with different probes are statistically independent
(although there may be situations where some statistical dependence would
be expected). We assume that eP,0 is associated with variance σ2

P0
and eP,i

with variance σ2
P and length scale parameter λP . If VDP is given by

VDP (i, j) = σ2
P0

+ σ2
P e
−d2P,ij/λ

2
P , dP,ij = ‖nj − ni‖, (I.26)

then the variance contribution VXP associated with probing effects is given
by

VXP = NVDPN
>

where N is the 3m ×m block diagonal matrix with ni in the ith diagonal
block.

I.3.9 Spatially and temporally correlated systematic effects

This section discusses some possible extensions to the models described
above.

Suppose that x = x∗+e(b)+ε where e(b) are systematic effects specified by
parameters b. For measurements that naturally arise in distinct blocks Xq,
q = 1, . . . , nQ, representing measurements of different component surfaces
or measurements taken over separate time intervals, it may be more realistic
to assume that for each Xq, the effects e are specified by different bq but
that the parameters bq are correlated with each other and the strength of
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correlation depends on where in the working volume the measurements are
made or at what times the measurements were made. We can use Gaussian
process models to represent this concept of spatio-temporal correlation. One
simple approach is as follows. We assume that to each block of measurements
Xq are assigned a representative location x̄q and a representative time tq. For
example we could take x̄q to be the centroid (mean) of the point coordinates
Xq and tq to be the mean time at which Xq was gathered. The correlation
coefficient ρqr relating bq to br can then be calculated according to ρqr =
k(x̄q, , x̄r, tq, tr) for some correlation kernel k, e.g.,

k(x̂q, x̄r, tq, tr|λS , τ) = e−d
2
qr/λ

2
Se−t

2
qr/τ

2
,

where

dqr = ‖xr − xq‖, tqr = |tr − tq|,

and λS and τ are spatial and temporal correlation lengths, respectively. If VB
is the nB×nB variance matrix associated with one set of effects parameters b,
then the (nBnQ)× (nBnQ) variance matrix associated with b1:nQ is a tensor
product of VB with R, the matrix of correlation coefficients with submatrices
VB,qr = ρqrVB. In practice only R and VB need be stored, rather that the
complete variance matrix. If GXq |Bq

is the sensitivity matrix of Xq with
respect to bq, then the variance matrix associated with the complete point
cloud is a block matrix with blocks

VXqr|B = GXq |BVB,qrG
>
X,r.

Temporal correlation can also be introduce to GP location, rotational and
probing errors to model the fact that these effects may change over time and
the degree of change depends on the temporal separation.

I.3.10 Length scales associated with the different influence
factors

The influences factors considered in this report (section I.2.3) can be thought
of as operating at different length scales. Effects associated with repeatabil-
ity essentially operate a near zero length scales: knowing the effect at one
location provides little information about the effect at a location nearby.
Spatially-correlated location and rotation errors operate at medium length
scales, controlled by the parameters λET and λER. Scale and squareness
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effects operate at length scales of the order of the largest diameter of the ma-
chine working volume. Probe qualification and probe radius effects operate
at infinite length scales in the sense that the effects are constant through-
out the working volume. Effects that depend on probing direction also are
associated with an infinite length scale in the sense that they are constant
along any probing direction.

I.3.11 Combining effects

We can write the point cloud variance matrix VX incorporating all the effects
considered above as

VX = VXT + VXR + VXP +GX|PQVPQG
>
X|PQ +GX|SVSG

>
X|S + VR, (I.27)

where the first three variance matrices or the right are derived from spatially
correlated location, rotation and probing effects, and the second three are the
contributions from probe qualification effects, scale and squareness effects,
and independent random effects, respectively. For some cases, not all effects
need to be considered. For example, for measurements using a single probe,
rotational effects and probe qualifications need not be calculated. While
the model does have some degree of complexity, all the variance matrices
can be calculated using direct calculations based on, for example, the point
coordinates, the distances between points, etc. All calculations have been
implemented in spreadsheets, for example.

Contribution to the variances of derived features from different
influence factors

If GA|X us the sensitivity matrix associated with a feature vector a with
respect to coordinates x1:m, then the variance matrix VA associated with a
can also be decomposed as

VA =VA|XT + VA|XR + VA|XP + ...

GA|PQVPQG
>
A|PQ +GA|SVBG

>
A|S +GA|XVRG

>
A|X ,

where VA|XT = GA|XVXTG
>
A|X , etc., and GA|S = GA|XGX|S , etc. Thus

GA|PQVPQG
>
A|PQ is the variance contribution to VA arising from probe qual-

ification effects, for example.
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The uncertainty contributions to u(a) from each of the influence factors can
also be evaluated:

u2(a) = u2
ET (a) + u2

ER(a) + u2
P (a) + u2

PQ(a) + u2
S(a) + u2

R(a),

where u2
ET (a) is the set of diagonal elements of VA|XT , etc.

Contributions to variances associated with position, size and shape
from different influence factors

Appendix .1 shows how any point cloud variance matrix VX can be anal-
ysed to separate out the positional, VPX , size/scale, VZX , and shape, VSX ,
components. The positional component is that which can be explained in
terms an uncertain frame of reference for the point clouds, the size compo-
nent that which can be explained in terms of an uncertainty global scale
while the shape component essentially is that component remaining. The
shape component is the dominant component in the contribution to form
error. The decomposition into positional, size and shape components can
be thought of as applying three sensitivity matrices GPX|X , GZX|X and
GSX|X to VX :

VPX|X = GPX|XVXG
>
PX|X , VZX|X = GZX|XVXG

>
ZX|X ,

VSX|X = GSX|XVXG
>
SX|X .

These sensitivity matrices can also be applied to the individual variance
contributions arising from the various influence factors, e.g.,

VPX|PQ = GPX|XVX|PQG
>
PX|X , VZX|PQ = GZX|XVX|PQG

>
ZX|X ,

VSX|PQ = GSX|XVX|PQG
>
SX|X ,

separates the contribution probe qualification effects make to position, size
and shape uncertainty and may be of interest for measurements involving
multiple probes.

Point cloud variance factorisation

We note that VX can always be factored as VX = KK> using a Cholesky
factorisation or a eigenvalue decomposition [26]. If VX is given as

VX =

nK∑
k=1

Vk, Vk = KkK
>
k ,
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a sum of variance contributions Vk that are already factored, then

VX = KK>, K = [K1 · · · Kk · · ·KnK ].

It is not necessary that the factor K is square and in general is a 3m × p
matrix. If p > 3m, then a QR factorisation [26] can be used to replace K
by a 3m× 3m factor.

Variance matrix associated with multiple features

It is often the case that multiple features aq are derived from distinct point
sets Xq, q = 1, . . . , nQ. Suppose VX is the variance matrix associated with
complete set of point coordinates x1:m ordered so that X1 is associated with
x1:mq , X2 is associated with xm1+1:m2 , etc., and VK = KK>. Partition K
row-wise so that

K =


K1
...
Kq
...

KnQ

 ,

so that the variance matrix associated with Xq is VXq = KqK
>
q . If GAq |Xq

is the sensitivity matrix of features aq with respect to Xq, then the variance
matrix VA associated with the complete set of feature vectors a1:nQ is

VA = KAK
>
A , KA =



GA1|X1
K1

...
GAq |Xq

Kq
...

GAnQ
|XnQ

KnQ

 .

Note that in general VA will be a full matrix with aq1 correlated to aq2 due
to their common dependence on systematic effects.

I-39



EUCoM D2 Report A Priori (type B) evaluation Method B1

I.4 Uncertainties associated with distances derived
from point clouds

This section considers how uncertainties associated with a point cloud can
be propagated through to the uncertainties associated the distance between
pair of points.

If an a priori model determines the point cloud matrices VX(σ) associated
with xi:m in terms of statistical parameters σ, then for any pair of points
xi and xj we can calculate the variance associated with the distance dij
according to

u2(dij) =

[
nij
−nij

]>
Vij

[
nij
−nij

]
, nij =

1

dij
(xi − xj)

where Vij is the 6 × 6 variance matrix formed from the 3i − 2 : 3ith and
3j − 2 : 3jth rows and columns of VX .

Often we are interested in the difference in distances, e.g., in comparing the
distance associated with a test artefact with that associated with a calibrated
reference artefact. Differences in distances also comes into the impact of
CMM uncertainties in form errors, e.g., the uncertainties associated with
the difference in two diameters of a spherical or cylindrical artefact. Using
the same notation

u2(dij − drs) =


nij
−nij
−nrs
nrs


>

Vijrs


nij
−nij
−nrs
nrs

 ,
where Vijrs is the 12 × 12 variance matrix formed from relevant rows and
columns of VX .

I.4.1 Distance measurement: uncertainty contribution asso-
ciated with random effects

If VX = σ2
SI, then

u2(dij) = 2σ2
R.

If dij = ‖xj − xi‖ and drs = ‖xs − xr‖, then

u2(dij − drs) = 4σ2
R.
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Note that these uncertainties depend only on σR and are independent of
location and separation of the points.

I.4.2 Distance measurement: uncertainty contribution from
probe qualification effects

We assume that probe qualification effects are modelled as in section I.3.4:

ePQ,k ∈ N (0, σ2
PQ,kI).

If xi and xj are measured using the same probe, then the uncertainty contri-
bution to the distance dij from probe qualification effects is zero. Otherwise

u2(dij) = σ2
PQ,k(i) + σ2

PQ,k(j).

The uncertainty contribution associated with dij − drs arises from the term

(ek(i) − ek(j))
>nij − (ek(r) − ek(s))

>nrs.

If k(i) = k(j) and k(r) = k(s), then u2(dij − drs) = 0. If k(r) = k(s) but
k(i) 6= k(j), then

u2(dij − drs) = u2(dij) = σ2
PQ,k(i) + σ2

PQ,k(j).

If k(i) = k(r) and k(j) = k(s) but k(i) 6= k(j), then

u2(dij − drs) = (2− 2n>ijnrs)
(
σ2
PQ,k(i) + σ2

PQ,k(j)

)
,

so that

0 ≤ u2(dij − drs) ≤ 4
(
σ2
PQ,k(i) + σ2

PQ,k(j)

)
,

depending on the angle between nij and nrs. The uncertainty contribution
is zero if nij = nrs, e.g., when two gauge blocks are measured parallel to
each other with both left faces measured by one probe and both right faces
by the other. The uncertainty contribution is maximised when nij = nrs,
e.g., when the left face of one gauge block is measured by one probe and
the left face of a second parallel gauge block is measured by the other probe
with the probes interchanged for the right face. If all four measurements are
undertaken by different probes then

u2(dij − drs) = u2(dij) + u2(drs) = σ2
PQ,k(i) + σ2

PQ,k(j) + σ2
PQ,k(r) + σ2

PQ,k(s).
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I.4.3 Distance measurement: uncertainty contribution asso-
ciated with scale and squareness effects

We consider scale and squareness model as in (I.9, involving seven random
effects b = (baa, bxx, byy, bzz, bxy, bxz, byz)

>. Given two data points xi and xj ,
let dij = ‖xj − xi| and xijxj − xi, yij = yj − yi and zij = zj − zi. Then the
1×7 sensitivity matrix GD|ij of dij with respect to the scale and squareness
effects e is given by10

GD|ij =
1

dij

[
d2
ij x2

ij y2
ij z2

ij xijyij xijzij yijzij
]
.

If

baa ∼ N (0, σ2
S), bxx, byy, bzz ∼ N (0, σ2

S,a),

and

bxy, bxz, byz ∼ N (0, σ2
Q).

then

u2(dij) = σ2
Sd

2
ij + σ2

S,aD
2
S,a + σ2

QD
2
Q, (I.28)

where

D2
S,a =

1

d2
ij

[
x4
ij + y4

ij + z4
ij

]
,

and

D2
Q =

1

d2
ij

[
x2
ijy

2
ij + x2

ijz
2
ij + y2

ijz
2
ij

]
.

The expression for u2(dij) in (I.28) shows non-isotropic behaviour in that
the uncertainty depends not only on the distance but also the position of
the points xi and xj . In particular, if xi and xj are aligned with an axis
direction, the cross terms xijyij are all zero along with two of xij , yij and
zij . For this case, u(dij) is given by

u2(dij) = (σ2
S + σS,a)

2d2
ij ,

and does not have a contribution from squareness effects.

10Strictly, GD|ij is the sensitivity matrix of δij = (xj − xi)
>nij where nij = (xj −

xi)/dij . We note that δij is a signed quantity with δij = ±dij .
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Two scale and squareness models with the same distance measure-
ment behaviour

See also [15]. From the expressions for u2(dij) in (I.28) we note that if
σ2
Q = 2σ2

S,a = τ2, say, then

σ2
S,aD

2
S,a + σ2

QD
2
Q =

1

d2
ij

τ2d4
ij = τ2d2

ij ,

and so
u2(dij) =

(
σ2
S + τ2

)
d2
ij .

Thus, if σ2
Q = 2σ2

S,a = τ2 then the uncertainty associated with the measure-
ment of any distance is exactly the same as for a CMM that has only a single
global scale effect with σ̃2

S = σ2
S + τ2. While the measurement of distance

has exactly the same behaviour, the measurement of other features could be
quite different. For example, a global scale effect will have little contribution
to the measurement of form error of a sphere while any squareness effect will
have a contribution.

Limitations of MPE statements in characterising CMM uncer-
tainty

The example above also shows that it is not possible to characterise the
uncertainty contribution of CMM measurement purely on the basis of an
MPE statement.

Uncertainty associated with the difference in two differences

If dij = ‖xj − xi‖ and drs = ‖xs − xr‖, then

u2(dij − drs) = σ2
S(dij − drs)2 + σ2

S,aD
2
S,a + σ2

QD
2
Q,

where

D2
S,a =

(
x2
ij

dij
− x2

rs

drs

)2

+

(
y2
ij

dij
− y2

rs

drs

)2

+

(
z2
ij

dij
− z2

rs

drs

)2

and D2
Q =(
xijyij
dij

− xrsyrs
drs

)2

+

(
xijzij
dij

− xrszrs
drs

)2

+

(
yijzij
dij

− yrszrs
drs

)2

.
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For example is x1 and x2 and x3 and x4 are the end points of diameters
with d12 = d34 = d and x2−x1 is parallel to the x-axis and x4−x3 parallel
to the y-axis, then

u2(d12 − d34) = 2d2σ2
S,a.

By contrast, if the four points are rotated by 45◦ then

u2(d12 − d34) = σ2
Qd

2.

If x2 − x1 is parallel to x4 − x3 and d12 = d34 = d, then u2(d12 − d34) = 0,
showing that scale and squares effects make no significant contribution to the
uncertainty in calibrating a test length standard against a reference length
standard of nominally the same length if the two standards are aligned
parallel to each other.

I.4.4 Distance measurement: uncertainty contribution from
spatially correlated location effects

See section I.3.7. Suppose that

xi = x∗i + ei, xj = x∗j + ej ,

where ei and ej are correlated effects. Suppose the x-components of the
correlated effects are such that

ei,x, ej,x ∼ N (0, σ2
x),

and the the coefficient of correlation for these two effects is ρij,x and that
the y- and z-components are similarly distributed. Assume that the x-, y-
and z-components are mutually independent then

u2(dij) =
2

d2
ij

(
x2
ijσ

2
x(1− ρij,x) + y2

ijσ
2
y(1− ρij,y) + z2

ijσ
2
z(1− ρij,z)

)
.

(Here xij = xj − xi, etc., as before.) If the correlation is described in terms

of a correlation kernel as in (I.20), then ρij,x = e−d
2
ij/λ

2
x . If the correlation

behaviour is the same in each axis with σx = σy = σz = σET and ρij,x =

ρij,y = ρij,z = ρij = e−d
2
ij/λ

2
ET , then

u2(dij) = 2σ2
ET

(
1− e−d

2
ij/λ

2
ET

)
.
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Let r = dij/λET . Then

1− e−d
2
ij/λ

2
ET = 1−

{
1− r2 +

r4

2!
− r6

3!
+ · · ·

}
,

= r2 − r4

2!
+
r6

3!
− · · ·

If λET is much greater than dij then e−r
2

is close to 1 and the uncertainty is
the distance is close to zero. For this case the effects ei ≈ ej act like a fixed
offset associated with the measurements (similar to a probe qualification
effect) and do not contribute the uncertainty associated with the distance.
For dij somewhat less than λET , the term on the right above is dominated
by the first term r2 so that

u2(dij) ≈ 2σ2
ET

d2
ij

λ2
ET

.

In this case, the uncertainty associated with dij is approximately propor-
tional to dij showing that the correlated effects behave somewhat like a scale

effect. If dij is much greater then λET the e−d
2
ij/λ

2
ET ≈ 0 and

u2(dij) ≈ 2σ2
ET .

For this case the correlated effects behave more like independent random
effects. Figures I.1–I.4 also give insight into the dependence of uncertainties
associated with distances on spatial correlation length.

Uncertainty associated with the difference in two distances

This section shows how the uncertainty u(d12− d34) in the difference in two
distances associated with four points x1:4 can be evaluated for an isotropic
spatial correlation model defined by statistical parameters σET and length
scale parameter λET . Let n12 be the unit normal point in the direction
x2 − x1 and n34 defined similarly. Then

u2(d12 − d34) = σ2
ETg

>VNg, g = (1,−1,−1, 1)>,

with

VN =


1 e−d

2
12/λ

2
ET ce−d

2
13/λ

2
ET ce−d

2
14/λ

2
ET

e−d
2
12/λ

2
ET 1 ce−d

2
23/λ

2
ET ce−d

2
24/λ

2
ET

ce−d
2
13/λ

2
ET ce−d

2
23/λ

2
ET 1 e−d

2
34/λ

2
ET

ce−d
2
14/λ

2
ET ce−d

2
24/λ

2
ET e−d

2
34/λ

2
ET 1

 ,
I-45



EUCoM D2 Report A Priori (type B) evaluation Method B1

where c = n>12n34, the cosine of the angle between the two normal vectors.
Performing the matrix-vector multiplications, we end up with

u2(d12 − d34) = 2σ2
ET (2− e12 − e34 + c(e23 + e14 − e13 − e24)) ,

where e12 = e−d
2
12/λ

2
ET , etc.

Example: comparison of two gauge blocks. Suppose two gauge blocks
of nominally the sample length are measured side by side, parallel to each
other. For this case d12 ≈ d34 = D, say, d13 ≈ d24 = d, say, and n12 ≈ n34

so that c ≈ 1. If d is much smaller that D, then d14 ≈ d23 ≈ d12, and

u2(d12 − d34) ≈ 4σ2
ET

(
1− e−d2/λ2ET

)
.

This uncertainty can be thought of as a quantification of the Abbe contribu-
tion to the uncertainty due to the fact that the measuring lines associated
with the two gauge blocks are displaced by d from each other.

I.4.5 Distance measurement: uncertainty contribution from
spatially correlated rotation effects

See section I.3.7. We assume the spatial correlation is isotropic specified
by variance σ2

ER and length scale parameter λER. If xk is measured using
probe offset pk, k = 1, 2, n12 is the unit vector pointing from x1 to x2, and
Gk are the sensitivity matrices associated with R(α)pk with respect to α
evaluated at α = 0 as in (I.23), then the uncertainty u(d12) in the distance
d12 due to rotation effects is given by

u2(d12) = σ2
ER

(
m>1 m1 +m>2 m2 − 2(m>1 m2)e−d

2
12/λ

2
ER

)
,

where mk = Gkn12, k = 1, 2. If the same probe is used for both measure-
ments, then p1 = p2 = p, say, m1 = m2 = m, say, and

u2(d12) = 2σ2
ERm

>m
(

1− e−d212/λ2ER

)
.

For this latter case, the quantity m>m depends on the relationship between
n12 and p. If p is in same direction as n12 (unlikely to be so in practice)
m = 0. If p is orthogonal to n12 (as is often the case) then m>m = p>p,
so for the case of the measurement of a distance using the same probe,

u(d12) ≤
√

2σER‖p‖
(

1− e−d212/λ2ER

)
.

I-46



EUCoM D2 Report A Priori (type B) evaluation Method B1

More generally,

u(d12) ≤
√

2σERP
(

1− e−d212/λ2ER

)
≤
√

2σERP,

where P is the length of the longest probe involved.

I.4.6 Distance measurement: uncertainty contribution from
spatially correlated probing effects (P)

See section I.3.8. We assume the spatial correlation is isotropic and specified
by variance σ2

P and length scale parameter λP . The spatial correlation
parameter λP relates to chordal distance on the unit sphere and is usually
chosen so that two points that are diametrically opposed on the unit sphere
are associated with independent effects, i.e., λP is significantly smaller than
1. In general, a value of λP = 1/2 is appropriate. Suppose xk is measured
in probing direction nk using probe offset pk with associated statistical
parameters σP0,k, σP,k and λP,k, k = 1, 2, and n12 is the unit vector pointing
from x1 to x2. For the case of different probes, the model in section I.3.8
assumes that the probing effects are independent so that

u2(d12) = σ2
P0,1 + σ2

P0,2 + σ2
P,1 + σ2

P,2.

For p1 = p2 = p, etc.,

u2(d12) = σ2
P0

(o2
1 + o2

2 − 2o1o2)

+ σ2
P

(
o2

1 + o2
2 − 2o1o2e

−d2P,12/λ
2
P

)
,

where

o1 = n>1 n12, o2 = n>2 n12, dP,12 = ‖n2 − n1‖.

It is usually the case that n1 and n2 are aligned with n12. In this case,
o1, o2 = ±1, and we have

u2(d12) = 4σ2
P0

+ 2σ2
P , n1 = −n2, u2(d12) = 0, n1 = n2. (I.29)

The relationships above in (I.29) shows how the model accounts for the dif-
ferences between uni-directional and bi-directional probing. For example, in
measuring a step gauge, the probing effects do not contribute to the uncer-
tainties associated with the distances between left-facing faces or between
right-faces faces but contribute to the uncertainties in distances between
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left- and right-facing faces. In the comparison of two gauge blocks sitting
side by side in which all four faces (two left-, two right-facing), are measured
with the same probe, then the uncertainty contributions are such that

u2(d12) = u2(d34) = 4σ2
P0

+ 2σ2
P , u2(d12 − d34) = 0.

I.4.7 Uncertainties associated with distances due to com-
bined effects

In the sections above, we have considered the uncertainty contributions to
distances due to a number of effects. In this section we summarise these
results, giving typical uncertainty contributions in terms of a small number
of statistical parameters.

Random effects (R). Statistical parameter σR.

u2
R(dij) = 2σ2

R.

Probe qualification effects (PQ). Statistical parameters σPQ repre-
senting the maximum probe qualification uncertainty. For distance mea-
surements using the same probe, the contribution is zero. Otherwise

u2
PQ(dij) ≤ 2σ2

PQ.

Scale and squareness effects (S). Statistical parameters σS , σS,a and
σQ. For this model, the uncertainty in distance is approximated by

u2
S(dij) ≈

(
σ2
S + σ2

S,a + σ2
Q

)
d2
ij .

If the measurements are aligned with an axis the squareness component,
represented by σQ, makes no contribution.

Spatially-correlated location effects (ET). Statistical parameters σET
and λET .

u2
ET (dij) = 2σ2

ET

(
1− e−d

2
ij/λ

2
ET

)
≤ 2σ2

ET .
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Spatially-correlated rotation effects (ER). Statistical parameters σER,
λER and the maximum probe length P .

u2
ER(dij) ≤ 2σ2

ERP
2
(

1− e−d
2
ij/λ

2
ER

)
≤ 2σ2

ERP
2.

Spatially-correlated probing effects (P). Statistical parameters σP0 ,
σP , and λP :

u2
P (dij) ≤ 4σ2

P0
+ 2σ2

P .

I.4.8 Plausible values for statistical parameters based on an
MPE statement

Suppose the MPE statement is |d− d∗| ≤ A+ d∗/B. We can interpret this
statement statistically as

Ku2(d) ≤ A+ d/B

where K is, say, 2 or 3. From the summary information given in section I.4.7
above, for dij ≈ 0, the uncertainty u(dij) is such that

u2(dij) ≤ 2
(
σ2
R + σ2

PQ + σ2
P + 2σ2

P0

)
.

This implies

σ2
A = 2

(
σ2
R + σ2

PQ + σ2
P + 2σ2

P0

)
≤ A2/K2 (I.30)

which puts constraints on the size of σA, as defined above, and depending on
the statistical parameters σR, σPQ, σP0 and σP . With σA defined as above,
we can set

u2(d) = σ2
A +

(
σ2
S + σ2

S,a + σ2
Q

)
d2 +

2σ2
ET

(
1− e−d2/λ2ET

)
+ 2σ2

ERP
2
(

1− e−d2/λ2ER

)
, (I.31)

a summary estimate of the uncertainty in distance due to the combined
effects, and evaluate

C(d) =
Ku(d)

A+ d/B
. (I.32)

If C(d) ≤ 1 over the working volume, then the values of the statistical
parameters do not violate the MPE statement. If Cmax = maxd≤Lmax C(d) is
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Table I.3: Statistical parameters for calculating u(d).
Effect Parameter Unit Value

MPE A mm 0.002
B 1 1.25e5

Repeatability σR mm 0.000 2

Scale, squareness σS 1 4.0e− 6
σS,a 1 2.0e− 6
σQ 1 2.0e− 6

Probe qualification σPQ mm 0.000 5

Location σET mm 0.000 5
λET mm 100.0

Rotation σER radians 1.0e− 5
λER mm 200.0
P mm 40.0

Probing σP0 mm 0.000 2
σP mm 0.000 2
λP 1 0.5

maximum value of C(d) over the working volume, then the simple procedure
of dividing all the statistical parameters representing standard deviations,
σR, etc., by Cmax will lead to conformance with the MPE statement.

Graphs of the MPE and uncertainty of distance components as a function of
d derived for statistical parameters in table I.3 and expansion factor K = 2
are shown in figure I.5. The figure shows that the statistical parameters
conform to the MPE statement. The uncertainty contribution from scale
and squareness effects is linear in d while the spatially-correlated location
and rotation effects start off as linear in d but begin to level off for larger
values of d. The spatially correlation length scale parameter λER associated
with the rotation effects is larger than that λET for the location effects and
the levelling off occurs later for the rotation effects. For d < 200 mm, the
rotation effects look like a scale effect. Figures I.6 and I.7 graph the same
functions but for the case λET = 50 mm and λER = 100 mm (shorter length
scale, less smooth behaviour) and λET = 200 mm and λER = 400 mm,
(longer length scale, smoother behaviour), respectively. The shorter length
scales correspond to behaviour more similar to independent random effects
(apart from over short distances) while the longer length scales correspond
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to behaviour more similar to scale and squareness effects.

Figure I.5: Graphs of the MPE and uncertainty of distance components as a
function of d. The upper solid line is A+ d/B, the lower solid line is Ku(d)
with u(d) evaluated as in (I.31) and uncertainty contributions KuS(d) from
scale and squareness effects, dotted line, KuET (d) from spatially correlated
location effects, dashed line, and KuER(d) from spatially correlated rotation
effects, dot-dashed line, derived for statistical parameters in table I.3 and
expansion factor K = 2.

Plausible values for spatial correlation location effects

The MPE statement can used to constrain a subset of the statistical param-
eters. In this section we consider random effects and spatially correlated
location effects.

Suppose a CMM is modelled in terms of

xi = x∗i + ei + εi, εi ∈ N (0, σ2
RI),

where ei are isotropic spatially correlated effects with associated variance
σ2
ET and length scale parameter λET . The uncertainty u(d) associated with
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Figure I.6: As figure I.5, but for λET = 50 mm and λER = 100 mm cor-
responding to shorter length scales and less smooth behaviour of the error
functions.

a distance measurement in this model is given by

u2(d) = 2σ2
R + 2σ2

ET

(
1− e−d2/λ2ET

)
.

If the MPE statement is |d − d∗| ≤ A + d∗/B, then we can interpret the
MPE statement statistically as

u2(d) = 2σ2
R + 2σ2

ET

(
1− e−d2/λ2ET

)
≤ 1

K2
(A+ d/B)2 , (I.33)

where K is such that the chances of measuring a distance that fails the
MPE test is small, say K = 2 or K = 3, correspond to a chance of 5 % or
0.27 %, respectively (assuming Gaussian distributions). The inequality in
(I.33) constrains the possible choices for σR, σET and λET . In particular,
for dij � λET and dij � B, we have

2σ2
R ≤ A2/K2.

We can rewrite the inequality in (I.33) as

R(d|σR, σET , λET ) ≤ 1, (I.34)
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Figure I.7: As figure I.5, but for λET = 200 mm and λER = 400 mm
corresponding to longer length scales and smoother behaviour of the error
functions.

where

R(d|σR, σET , λET ) = K2
2σ2

R + 2σ2
ET

(
1− e−d2/λ2ET

)
(A+ d/B)2

.

As a function of d, R(d|σR, σET , λET ) is unimodal taking the value of 2Kσ2
R/A

2

at d = 0 and decaying like 1/d2 as d −→∞. If Lmax is the longest distance
in the working volume, then if Ṙ(Lmax) > 0, where Ṙ is the derivative of R
with respect to d, it follows that R(d) ≤ 1 for 0 ≤ d ≤ Lmax. If R(Lmax) ≤ 1
but Ṙ(Lmax) < 0, then R(d) has its maximum inside the interval [0, Lmax].
As d increases from 0, the numerator in R(d) increases until the point where
e−d

2/λ2ET becomes small. From then the numerator is constant and the be-
haviour of R(d) follows a 1/d2 decay. Let d0 be such that e−d

2
0/λ

2
ET = 0.1,

i.e.,

d0 =
√

(− log(0.1))λET ,

an approximation to the point where R(d) takes its maximum. If R0 =
R(d0|σR, σET , λET ) < 1, then it is likely that the constraint on R ≤ 1 is
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valid for all d ≤ d0. If R0 > 1, then reducing σET to

σ̂M :=
1

1.8

[
(A+ d0/B)2

K2
− 2σ2

R

]
, d0 =

√
log(10)λET , (I.35)

will likely reduce R(d) to be less than 1 over the range 0 ≤ d ≤ d0. These cal-
culations give a useful approximate value for σET so thatR(d|σR, σET , λET ) ≤
1, given estimates of σR and λET .

Figure I.8 shows the graphs of the functionsR(d|σR, σET , λET ) andR(d|σR, σ̂M , λET )
defined in (I.34) for λET = 20 mm, 50 mm and 100 mm. Each graph gives
the function determined using the prior value of σET = 0.001 mm, and the
function determined using the adjusted value of σ̂M calculated as in (I.35).
The adjusted values are σ̂M = 0.000 6 mm, 0.000 7 mm, and 0.000 9 mm,
for the three values of λET . For each of the three cases, it is seen that the
estimate d0 is reasonably close to where R(d) is maximised, and that the
adjusted function satisfies R(d|σR, σ̂M , λET ) ≤ 1 to a good approximation.
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Figure I.8: Graphs of the functionsR(d|σR, σET , λET ) andR(d|σR, σ̂M , λET )
defined in (I.34) for λET = 20 mm (top), λET = 50 mm (middle) and
λET = 100 mm (bottom). Each graph gives the function determined using
the prior value of σET , and the function determined using the adjusted value
of σ̂M calculated as in (I.35).
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I.5 Least squares (Gaussian) associated features

In this section we look at methods that derive features through fitting model
to data by minimising a sum of squares objective function. Many of the
calculations involve the distance to an axes or a plane and we consider those
first.

I.5.1 Calculations associated with axes

Point on an axis

If zA = xA + tAvA, is a point on the axis, then the sensitivity matrix GZ|B
of zA with respect to b>A = (x>A,v

>
A) is the 3× 6 matrix

GZA|BA
=

 1 0 0 tA 0 0
0 1 0 0 tA 0
0 0 1 0 0 tA

 .
Distance from a point to an axis

For an axis specified by xA and vA = (uA, vA, wA)> with ‖vA‖ = 1, the
distance from a point x to the axis is given by

dA(x, bA) = ‖(x− xA)× vA‖, (I.36)

with

(x− xA)× vA =

 ξ
η
ζ

 =

 (y − yA)wA − (z − zA)vA
(z − zA)uA − (x− xA)wA
(x− xA)vA − (y − yA)uA

 .
The 1× 6 sensitivity matrix GDA|BA

of dA = dA(x, b) with respect to b>A =

(x>A,v
>
A) is given by

G>D|B =
1

dA



ηwA − ζvA
ζuA − ξwA
ξvA − ηuA

η(z − zA)− ζ(y − yA)
ζ(x− xA)− ξ(z − zA)
ξ(y − yA)− η(x− xA)

 . (I.37)
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Distance from a point to a plane orthogonal to an axis

The distance dP (x, bA) from a point x to the plane (x − xA)>vA = 0
specified by xA and vA = (uA, vA, wA)> with ‖vA‖ = 1, is given by

dP (x, bA) = (x− xA)>vA. (I.38)

The 1× 6 sensitivity matrix GDP |BA
of dP = dP (x, b) with respect to b> =

(x>A,v
>
A) is given by

G>DP |BA
=



−uA
−vA
−wA
x− xA
y − yA
z − zA

 . (I.39)

Intersection of axes with a fixed plane

Suppose b = (x>A,v
>
A)>, with v>AvA = 1, specifying an axis L has associated

6 × 6 variance matrix VB and that a fixed plane P is specified by locating
point xP , with axis unit normal vP , with v>PvP = 1. The point intersection
xL of the L with P is given by

xL = xA + tvA, t =
(xP − xA)>vP

v>AvP
.

The 3× 6 sensitivity matrix GL|B of xL with respect to b is given by

GL|B = [G tG], G = I −
vAv

>
P

v>AvP
. (I.40)

If b1 and b2 specify two axes L1 and L2 that intersect the plane P, then the
1 × 12 sensitivity matrix associated with the distance d12 between the two
points of intersection with respect to [b>1 b

>
2 ]> is given by

Gd12,B =
[
n>12G1, t1n

>
12G1, − n>12G2, − t2n>12G2

]
,

where n12 = (xL,2 − xL,1)/d12, the unit normal vector pointing from xL,1
to xL,2, t1 and t2 define the points of intersection, and G1 and G2 are the
3× 3 sensitivity matrices calculated as in (I.40). If vA,1 ≈ vA,2 ≈ vP as in
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the case where both axes are approximately orthogonal to the plane, then
n>12vA,1 ≈ 0, etc., and

Gd12,B ≈
[
n>12, t1n

>
12, − n>12, − t2n>12

]
.

For this latter case, let m12 = n12 × vP , the unit vector orthogonal to
both n12 and vP . Then (vA,2−vA,1)>n12 is approximately the angle αm of
rotation between vA,1 and vA,2 about the axis m12 and (vA,2 − vA,1)>m12

is approximately the angle rotation αn between vA,1 and vA,2 about the
axis n12. The 1 × 12 sensitivity matrices associated with αm and αn are
approximated by

Gαm,B ≈
[
0,−n>12, 0, n>12

]
,

Gαn,B ≈
[
0,−m>12, 0, m>12

]
.

These sensitivity matrices are useful in evaluating the uncertainty associ-
ated with the angles between two nominally parallel axes, and similar cal-
culations.

I.5.2 Least squares (LS) feature assessment

Suppose u 7→ s(u,a) defines a parametric curve or surface. The parameters
u determine the position of a point on the surface and the parameters a
determine the shape and position of the surface. We assume that set of
measured coordinates, x1:m nominally represent points on such a surface, so
that

xi ≈ s(ui,a), (I.41)

for some ui and some a. The least squares (LS) estimates û1:m and â of
u1:m and a, respectively, can be found by minimising

m∑
i=1

d2(xi,a), d(xi,a) = (xi − s(u∗i ,a))>ni, (I.42)

where u∗i specifies the point s∗i = s(u∗i ,a) on the surface closest to xi and
ni is the normal vector at s∗i . The term least squares orthogonal distance
regression (LSODR) is also used for this type of optimisation problem [6, 27]
as d(xi,a) is the (signed) distance of xi from the surface s(u,a) measured
orthogonally to the surface. For standard geometric elements, d(x,a) can
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be evaluated analytically [13, 14]. For more general surfaces, numerical
methods are required [21]. Let J = J(x1:m,a) be the Jacobian matrix
defined by

Jij =
∂d

∂aj
(xi,a).

The optimality conditions for a to minimise the sum of squares in (I.42) are
of the form

J>d = 0, J = J(x1:m,a), di = d(xi,a).

These optimality conditions implicitly define the solution a as function of
the data points x1:m and allow us to evaluate the sensitivity matrix GA|X of
a with respect to the data [1, section 4.2.4]. If J is the Jacobian matrix and
ni are the corresponding surface normals at the solution û1:m and â then

GA|X = GA|DN
>, GA|D = −(J>J)−1J>, (I.43)

where N is the 3m × m block diagonal matrix storing the normal vectors
ni in the 3 × 1 diagonal blocks. The matrix n ×m GA|D is the sensitivity
matrix of the parameters a with respect to changes in xi in the direction of
ni, i.e, with respect to n>i xi, i = 1, . . . ,m.

If J has QR factorisation [26]

J = QR = [Q1 Q2]

[
R1

0

]
(I.44)

where Q is orthogonal and R is upper-triangular, then

GA|D = −R−1
1 Q>1 .

If VX is the variance matrix associated with x1:m, then the variance matrix
associated with the features a is given by

VA = GA|XVXG
>
A|X .

If VX is the diagonal matrix σ2I, then

VA = σ2(J>J)−1 = σ2(R>1 R1)−1, (I.45)

using the fact that N>N = I. If the systematic effects e1:m are defined in
terms of parameters b with associated variance matrix VB, then the variance
contribution VA|B to the variance VA arising form the effects is given by

VA|B = GA|BVBG
>
A|B, GA|B = GA|XGX|B.
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Uncertainties associated with residual distances

It is also possible to propagate the uncertainties associated with x1:m through
to the residual distances d where di = d(xi,a) evaluated at the solution.
Taking into account the fact that the solution a is implicitly defined as a
function of x1:m, the sensitivity matrix G

D̂|X of d with respect to x1:m is

given by

G
D̂|X =

(
I − J(J>J)−1J

)
N>,

=
(
I + JGA|D

)
N>, (I.46)

=
(
I −Q1Q

>
1

)
N> = Q2Q

>
2 N

>,

where Q1 and Q2 are the submatrices of the orthogonal factor Q as in (I.44).
We also write

G
D̂|D = I + JGA|D = I −Q1Q

>
1 (I.47)

to denote the sensitivity of the residual distances d(xi, â) with respect to
changes in xi in the direction ni, i.e., with respect to n>i xi.

We can also evaluate the sensitivity matrix GS|X of the component of the
surface points s(u∗i ,a) orthogonal to the surface with respect to x1:m:

GS|X = J(J>J)−1J>N> = −JGA|X . (I.48)

The sensitivity matrix

GS|D = −J(J>J)−1J> = −JGA|D, (I.49)

is the sensitivity matrix of the component of the surface points s(u∗i ,a)
orthogonal to the surface with respect to n>i xi, i = 1, . . . ,m.

The sensitivity matrices above, GA|X , GD|X and GS|X can all be stored
compactly and constructed from the m × n matrix J , the n × m matrix
(J>J)−1J> and the normal vectors n1:m.

Weighted least squares orthogonal distance regression

It is sometimes useful to incorporate weights wi ≥ 0 into the orthogonal
distance regression scheme so that the counterpart of (I.42) is

m∑
i=1

w2
i d

2(xi,a), d(xi,a) = (xi − s(u∗i ,a))>ni. (I.50)
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Let W be the diagonal matrix with w2
i in the ith diagonal element. Then

the counterpart of (I.43) is

GA|X,W = −(J>WJ)−1J>WN>, (I.51)

with GD|X and GS|X calculated as in (I.46) and (I.48) but with GA|X,W
replacing GA|X . Similarly,

GA|D,W = −(J>WJ)−1J>W, (I.52)

is the sensitivity matrix of weighted least-squares fitted parameters a with
respect to n>i xi, and can be used to calculate GD̂|D and GS|D as in (I.47)

and (I.49).
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I.5.3 Sensitivity matrix associated with a least-squares circle
fit to data in a plane

If a circle is parametrized by a = (x0, y0, r0)> specifying its centre x0 and
radius r0, the signed distance d(xi,a) from a data point xi to the sphere
given by a is

d(xi,a) = ri − r0,

where

r2
i = (xi − x0)>(xi − x0) = (xi − x0)2 + (yi − y0)2.

The ith row Jacobian matrix J of partial derivatives of d(xi,a) with respect
to a> is given by

J(i, :) = − 1

ri
[xi − x0, yi − y0, ri] = −[n>i , 1], ni = (xi − x0)/ri

The optimality conditions J>d = 0 can be written as

m∑
i=1

(ri − r0)ni = 0, r0 =
1

m
ri,

showing that at the solution, the radius of the best fit circle is the average
of all the distances of the points to the centre. The 3× 3 matrix H = J>J
is given by

H =

[ ∑
inin

>
i

∑
ini∑

in
>
i m

]
.

The sensitivity matrix GA|X = H−1J>N> and

J>N> = −
[
n1n

>
1 n2n

>
2 · · · nmn

>
m

n>1 n>2 · · · n>m

]
. (I.53)

showing that perturbing xi by ∆xi causes x0 to be perturbed by an amount
that depends on extend to which ∆xi is aligned with the normal ni.

For points xi approximately uniformly distributed around the circle, H is
approximately diagonal with

H ≈ m

 1/2 0 0
0 1/2 0
0 0 1

 , H−1 ≈ 1

m

 2 0 0
0 2 0
0 0 1

 . (I.54)
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Thus if VX = σ2
RI then, from (I.45), VA = σ2

RH
−1, showing that the vari-

ances associated with a vary with 1/m and that the variance associated with
x0 is twice that associated with r0, for a uniform distribution of points. We
can argue that every data point contributes to estimating the radius but on
average only half of the data points contribute to estimating each coordi-
nate of the circle centre. This behaviour is made clear by looking at the
sensitivity matrix GA|X .

Analytical approximations for (an arc of) a circle

The calculation of H in (I.54) is for the case of points uniformly distributed
around a complete circle. Similar but more complicated calculations can be
made for a partial circle and the common and often problematic case of a
small arc of a circle.

For points (xi, yi)
> = r0(cos θi, sin θi)

> on a circle, the corresponding con-
tribution to the Jacobian matrix is the row (− cos θi,− sin θi,−1) and the
matrix H = J>J is given by

H =

 ∑
i cos2 θi

∑
i cos θi sin θi

∑
i cos θi∑

i cos θi sin θi
∑

i sin2 θi
∑

i sin θi∑
i cos θi

∑
i sin θi m

 .
The principle of Monte Carlo integration states that for a function f(θ)
defined over a region A the integral of the function over the region can be
approximated according to

1

|A|

∫
A
f(θ)dθ ≈ 1

m

m∑
i=1

f(θi), (I.55)

where θ1:m is a sample of points uniformly distributed over the region A
and |A| is the area/volume of the region. We can use this approximation in
the other direction to approximate H derived from a discrete set of points
from analytically derived integrals. For example, suppose points x1:m are
approximately uniformly distributed of the arc of the circle defined by −α ≤
θi ≤ α. Then

m∑
i=1

cos2 θi ≈
m

2α

∫ α

−α
cos2 θdθ = m

(
1

2
+

sin 2α

4α

)
;
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see Appendix .3. Continuing in this way, let

Hα =

 1/2 + (sin 2α)/4α 0 (sinα)/α
0 1/2− (sin 2α)/4α 0

(sinα)/α 0 1

 , (I.56)

and Vα = H−1
α given by

Vα =
1

D13

 1 0 −(sinα)/α
0 D13/(1/2− (sin 2α)/4α) 0

−(sinα)/α 0 (1/2 + (sin 2α)/4α)

 ,
where

D13 = 1/2 + (sin 2α)/4α− ((sinα)/α)2,

the determinant of the 2× 2 submatrix of Hα constructed from its first and
third rows and columns. Then

(J>J)−1 ≈ 1

m
Vα.

If the variance matrix associated x1m can be approximated by σ2
RI, then

the variance matrix VA associated with the fitted circle parameters is ap-
proximated by

VA ≈
σ2
R

m
Vα,

and the standard uncertainties associated with a are given by σR
√
vjj/m,

where vjj is the jth diagonal element of Vα. The quantities s(aj) =
√
vjj for

selected values of α are given in table I.4. For α less than 10π/180, i.e., less
than 10 degrees, then D13 is approximated by α4/45 and the diagonal ele-
ments of Vα are approximated by 45/α4, 3/α2 and 45(1−α2/3)/α4; see also
table I.4. The uncertainty associated with the y-coordinate of the circle cen-
tre scales with 1/α while the uncertainties associated with the x-coordinate
and radius scale with 1/α2, for small α. The estimate of the x-coordinate
of circle centre is almost perfectly negatively correlated with the estimate of
the radius.
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Table I.4: Square roots s(a) of the diagonal elements of Vα. For points
x1:m approximately uniformly distributed on the arc of the circle defined
by −α ≤ θi ≤ α and for point cloud variance matrix σ2

RI, the uncertainties
u(a) = σRs(a)/

√
m.
2α/deg s(x0) s(y0) s(r0)

360 1.41 1.41 1.00

270 1.81 1.28 1.14

180 3.25 1.41 2.30

160 3.96 1.51 2.97

140 5.00 1.65 3.98

120 6.62 1.85 5.56

100 9.30 2.14 8.23

80 14.25 2.61 13.16

60 24.95 3.40 23.85

40 55.54 5.02 54.42

20 220.70 9.95 219.58

α ≤ 5 deg

α/rad ≈
√

45/α2 ≈
√

3/α ≈
√

45/α2
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I.5.4 Sensitivity matrix associated with a least-squares sphere
fit to data

If a sphere is parametrized by a = (x0, y0, z0, r0)> specifying its centre x0

and radius r0, the signed distance d(xi,a) from a data point xi to the sphere
given by a is

d(xi,a) = ri − r0,

where

r2
i = (xi − x0)>(xi − x0) = (xi − x0)2 + (yi − y0)2 + (zi − z0)2.

The ith row Jacobian matrix J of partial derivatives of d(xi,a) with respect
to a> is given by

J(i, :) = − 1

ri
[xi − x0, yi − y0, zi − z0, ri] = −[n>i , 1], ni = (xi − x0)/ri

The optimality conditions J>d = 0 can be written as

m∑
i=1

(ri − r0)ni = 0, r0 =
1

m
ri,

showing that at the solution, the radius of the best fit sphere is the average
of all the distances of the points to the centre. The 4× 4 matrix H = J>J
is given by

H =

[ ∑
inin

>
i

∑
ini∑

in
>
i m

]
.

For points xi approximately uniformly distributed around the sphere, H is
approximately diagonal with

H ≈ m


1/3 0 0 0
0 1/3 0 0
0 0 1/3 0
0 0 0 1

 , H−1 ≈ 1

m


3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 1

 .
Thus if VX = σ2

RI then, from (I.45), VA = σ2
RH
−1, showing that the vari-

ances associated with a vary with 1/m and that the variance associated with
x0 three times that associated with r0, for a uniform distribution of points
around the complete sphere.
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The sensitivity matrix GA|X = H−1J>N> and

J>N> = −
[
n1n

>
1 n2n

>
2 · · · nmn

>
m

n>1 n>2 · · · n>m

]
. (I.57)

showing that perturbing xi by ∆xi causes x0 to be perturbed by an amount
that depends on extend to which ∆xi is aligned with the normal ni.

Analytical approximations for a patch of a sphere

We can use the principle of Monte Carlo integration (I.55) to determine
analytical approximations for matrices used to construct the sensitivity ma-
trices. In polar coordinates with (x, y, z) = (cos θ cosφ, sin θ cosφ, sinφ), for
points approximately uniformly distributed on the sphere on the patch de-
termined by π ≤ α1 ≤ θ ≤ α2 ≤ π and −π/2 ≤ β1 ≤ φ ≤ β2 ≤ π/2 we
have

1

m
J>J ≈ 1

A
HA,
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where HA is the symmetric matrix with

HA(1, 1) =

∫ α2

α1

cos2 θdθ

∫ β2

β1

cos3 φdφ,

HA(1, 2) =

∫ α2

α1

sin θ cos θdθ

∫ β2

β1

cos3 φdφ

HA(1, 3) =

∫ α2

α1

cos θdθ

∫ β2

β1

sinφ cos2 φdφ,

HA(1, 4) =

∫ α2

α1

cos θdθ

∫ β2

β1

cos2 φdφ,

HA(2, 2) =

∫ α2

α1

sin2 θdθ

∫ β2

β1

cos3 φdφ,

HA(2, 3) =

∫ α2

α1

sin θdθ

∫ β2

β1

sinφ cos2 φdφ,

HA(2, 4) =

∫ α2

α1

sin θdθ

∫ β2

β1

cos2 φdφ,

HA(3, 3) = (α2 − α1)

∫ β2

β1

sin2 φ cosφdφ,

HA(3, 4) = (α2 − α1)

∫ β2

β1

sinφ cosφdφ,

HA(4, 4) = (α2 − α1)

∫ β2

β1

cosφdφ.

These integrals can be evaluated according to the formulæin Appendix .3.
The elements of HA take into account the change of variables from Cartesian
to spherical coordinates and involve an additional cosφ term.
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Cap of a sphere

We consider here the case −π ≤ θ ≤ π and −π/2 ≤ β1 ≤ φ ≤ π/2. For this
case, the nonzero elements of Hγ = 1

|A|HA are determined by

Hγ(1, 1) =
1

2(1− cos γ)
(2/3− cos γ − cos3 γ/3),

Hγ(2, 2) =
1

2(1− cos γ)
(2/3− cos γ − cos3 γ/3),

Hγ(3, 3) =
1

1− cos γ
(1− cos3 γ)/3,

Hγ(3, 4) =
1

1− cos γ
(1− cos 2γ)/4,

Hγ(4, 4) = 1,

where γ = π/2− β1. The nonzero elements of Vγ = H−1
γ are determined by

Vγ(1, 1) = 1/Hγ(1, 1),

Vγ(2, 2) = 1/Hγ(2, 2),

Vγ(3, 3) =
1

D34

Vγ(3, 4) = − 1

D34
Hγ(3, 4),

Vγ(4, 4) =
1

D34
Hγ(3, 3),

where
D34 = Hγ(3, 3)−H2

γ(3, 4),

the determinant of the bottom right 2 × 2 submatrix of Hγ . If the point
cloud data is associated with variance matrix σ2

RI, then the variance matrix
VA associated with the fitted sphere parameters a is approximated by

VA ≈
σ2
R

m
Vγ .

For γ approaching zero, corresponding to measurements on a cap of a sphere,
D34 ≈ γ4/48, and

Vγ ≈


4/γ2 0 0 0

0 4/γ2 0 0
0 0 48/γ4 −48(1− γ2/4)/γ4

0 0 −48(1− γ2/4)/γ4 48(1− γ2/2)/γ4

 . (I.58)
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Table I.5: Square roots s(a) of the diagonal elements of Vγ in (I.58). For
points x1:m approximately uniformly distributed on the sphere with eleva-
tion angle satisfying π/2−γ ≤ φi ≤ π/2 and for point cloud variance matrix
σ2
RI, the uncertainties u(a) = σRs(a)/

√
m.

γ/deg s(x0) s(y0) s(z0) s(r0)

180 1.73 1.73 1.73 1.00

135 1.65 1.65 2.03 1.04

90 1.73 1.73 3.46 2.00

80 1.83 1.83 4.19 2.66

70 1.97 1.97 5.26 3.67

60 2.19 2.19 6.93 5.29

50 2.52 2.52 9.70 8.03

40 3.04 3.04 14.81 13.11

30 3.95 3.95 25.86 24.15

20 5.82 5.82 57.44 55.72

10 11.50 11.50 228.02 226.29

γ ≤ 5 deg

γ/rad ≈ 2/γ ≈ 2/γ ≈
√

48/γ2 ≈
√

48/γ2

The quantities s(aj) =
√
Vγ(j, j) for selected values of γ are given in ta-

ble I.5. The uncertainty associated with the x and y-coordinates of the
sphere centre scale with 1/γ while the uncertainties associated with the z-
coordinate and radius scale with 1/γ2, for small γ. The estimate of the
z-coordinate of sphere centre is almost perfectly negatively correlated with
the estimate of the radius. These results are in line with results associated
with an arc of a circle discussed in section I.5.3.

These calculations are also relevant to determining the radius of curvature
for other surfaces such as paraboloids and aspherics that have low curvature.

Equatorial band of a sphere

The calculations in section I.5.4 can be used to estimate sensitivities asso-
ciated with measurements distributed along an equatorial band of a sphere
defined by −π ≤ θ ≤ π and −β ≤ φ ≤ β ≤ π/2. These calculations are
also relevant to measurements using ball bar or machine checking gauge that
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Table I.6: Square roots s(a) of the diagonal elements of Vβ in (I.59). For
points x1:m approximately uniformly distributed on a equatorial band of
the sphere with elevation angle satisfying −β ≤ φi ≤ β ≤ π/2 and for point
cloud variance matrix σ2

RI, the uncertainties u(a) = σRs(a)/
√
m.

β/deg s(x0) s(y0) s(z0) s(r0)

90 1.73 1.73 1.73 1.00

80 1.72 1.72 1.76 1.00

70 1.68 1.68 1.84 1.00

60 1.63 1.63 2.00 1.00

50 1.58 1.58 2.26 1.00

40 1.52 1.52 2.69 1.00

30 1.48 1.48 3.46 1.00

20 1.44 1.44 5.06 1.00

10 1.42 1.42 9.97 1.00

β ≤ 5 deg

β/rad ≈
√

2 ≈
√

2 ≈
√

3/β 1

rotates about a fixed point and defines points on a virtual sphere. The area
over which the integration is performed is |A| = 4π sinβ. For points ap-
proximately uniformly distributed in an equatorial band, if the point cloud
data is associated with variance matrix σ2

RI, then the variance matrix VA
associated with the fitted sphere parameters a is approximated by

VA ≈
σ2
R

m
Vβ

where

Vβ =


2/(1− sin2 β/3) 0 0 0

0 2/(1− sin2 β/3) 0 0
0 0 3/ sin2 β 0
0 0 0 1

 . (I.59)

Points on a longitudinal segment of a sphere

The calculations in section I.5.4 can be used to estimate sensitivities asso-
ciated with measurements distributed in a longitudinal segment of a sphere
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defined by −π ≤ −α ≤ θ ≤ α ≤ π and −π/2 ≤ φ ≤ π/2 ( the curved
surface of a segment of an orange). These calculations are also relevant to
measurements using ball bar or machine checking gauge that rotates about
a fixed point and defines points on a virtual sphere. The area over which the
integration is performed is |A| = 4α. For points approximately uniformly
distributed over the segment, if the point cloud data is associated with vari-
ance matrix σ2

RI, then the variance matrix VA associated with the fitted
sphere parameters a is approximated by

VA ≈
σ2
R

m
Vα (I.60)

where the nonzero elements of Vα are specified by

Vα(1, 1) = 1/D14,

Vα(1, 4) = −π sinα/(4αD14),

Vα(2, 2) = 3α/(α− (sin 2α)/2),

Vα(3, 3) = 3,

Vα(4, 4) = 3α/(D14(α+ (sin 2α)/2)),

with

D14 =
α+ (sin 2α)/2

3α
−
(
π sinα

4α

)2

.

the determinant of the 2 × 2 submatrix of Hα = V −1
α comprising of rows

and columns 1 and 4. For α near zero, D14 ≈ 2/3− (π/4)2 ≈ 0.05,

Vα ≈


20 0 0 −5π
0 9/(2α2) 0 0
0 0 3 0
−5π 0 0 40/3

 . (I.61)

The quantities s(aj) =
√
Vα(j, j) for selected values of α are given in ta-

ble I.5.4. The uncertainty associated with the y-coordinate of the sphere
centre scales with 1/α, while all other parameters remain well defined. These
calculations depend on measuring over the complete segment, including the
two poles. Corresponding calculations for measurements reduced to an equa-
torial band of the segment can be made using the results in section I.5.4.
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Table I.7: Square roots s(a) of the diagonal elements of Vα in (I.60). For
points x1:m approximately uniformly distributed on a segment of the sphere
with −α ≤ θi ≤ α ≤ π and for point cloud variance matrix σ2

RI, the
uncertainties u(a) = σRs(a)/

√
m.

2α/deg s(x0) s(y0) s(z0) s(r0)

360 1.73 1.73 1.73 1.00

270 2.20 1.57 1.73 1.13

180 3.46 1.73 1.73 2.00

160 3.85 1.85 1.73 2.36

140 4.22 2.02 1.73 2.74

120 4.50 2.26 1.73 3.09

100 4.66 2.62 1.73 3.36

80 4.69 3.19 1.73 3.53

60 4.64 4.16 1.73 3.62

40 4.56 6.15 1.73 3.65

20 4.50 12.19 1.73 3.66

α ≤ 5 deg

α/rad ≈
√

20 ≈
√

4.5/α ≈
√

3 ≈
√

40/3
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Procedure for evaluating a sphere feature sensitivity matrix

The approach described in section I.5.2 allow us to evaluate the sensitivity
matrix associated with a weighted least-squares sphere fit to data.

Inputs

1. Sphere centre x0 and radius r0.

2. Point coordinates coordinates x1:m for points lying on or close to the
sphere surface specified by a> = (x>0 , r0).

3. Weights w1:m, wi ≥ 0.

Outputs

1. 4 × m sensitivity matrix GA|D of a with respect to changes in x1:m

normal to the sphere surface where a is determined from a weighted
least-squares fit to the data.

2. Point coordinates x∗1:m of footpoints, i.e., x∗i is the point on the sphere
surface specified by a closest to xi.

3. Outward pointing unit normal vectors n1:m corresponding to x∗1:m.

4. m× 4 Jacobian matrix associated with an unweighted least-squares fit
and parameters a.

Procedure

1. For each i = 1, . . . ,m, set ri = xi − x0, ni = (xi − x0)/ri and x∗i =
r0ni.

2. Assign the m× 4 Jacobian matrix J : for each i = 1, . . . ,m, set J(i, 1 :
4) = [−n>i ,−1] to

3. Form weighted Jacobian matrix JW : for each i = 1, . . . ,m, set JW (i, 1 :
4) = w2

i J(i, 1 : 4).

4. Form sensitivity matrix GA|D = −
(
J>JW

)−1
J>W .
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I.5.5 Sensitivity matrix associated with a least-squares plane
fit to data

The calculations associated with an axis give above in section I.5.1 allow us
to evaluate the sensitivity matrix associated with a least-squares plane fit to
data. Given a location point xA and unit direction vector vA, the equation
of the associated plane can be written as

(x− xA)>vA = 0.

The calculations involve a parametrization of the plane in terms of three
parameters a in which the kth coordinate of vA is held fixed and only the
kth coordinate of xA is free.

Procedure for evaluating the plane feature sensitivity matrix

Inputs

1. Plane locating point xA and unit axis direction vector vA, ‖vA‖ = 1.

2. Point coordinates coordinates x1:m for points lying on or close to the
plane specified by b where b> = (x>A,v

>
A).

3. Weights w1:m, wi ≥ 0.

4. Coordinate index k specifying the parametrization of the plane to be
used.

Outputs

1. 6 × m sensitivity matrix GB|D of b with respect to changes in x1:m

normal to the plane surface, where b is determined from a weighted
least squares fit to the data.

2. 3×m sensitivity matrix GA|D of a with respect to changes in x1:m nor-
mal to the plane surface, where a are associated with the parametriza-
tion specified by k and is determined from a weighted least squares fit
to the data.
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3. Point coordinates x∗1:m of footpoints, i.e., x∗i is the point on the plane
surface specified by b closest to xi.

4. Outward pointing unit normal vectors n1:m corresponding to x∗1:m.

5. m× 3 Jacobian matrix associated with an unweighted least-squares fit
and parameters a.

Procedure

1. For each i = 1, . . . ,m, set di = (xi − xA)>vA, ni = vA, and x∗i =
xi − dini.

2. Assign the m × 6 Jacobian matrix JB: for each i = 1, . . . ,m, set
JB(i, 1 : 6) = [−n>i , (xi − xA)>].

3. Assign sensitivity matrix GB|A depending on k:

(a) if k = 1, set

GB|A =



1 0 0
0 0 0
0 0 0
0 wA −vA
0 0 uA
0 −uA 0

 .

(b) if k = 2, set

GB|A =



0 0 0
1 0 0
0 0 0
0 0 −vA
0 −wA uA
0 vA 0

 .

(c) if k = 3, set

GB|A =



0 0 0
0 0 0
1 0 0
0 0 wA
0 −wA 0
0 vA −uA

 .
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4. Form Jacobian matrix with respect to a: J = JBGB|A.

5. Form weighted Jacobian matrix JW : for each i = 1, . . . ,m, set JW (i, 1 :
3) = w2

i J(i, 1 : 3).

6. Form sensitivity matrix GA|D = −
(
J>JW

)−1
J>W .

7. Form sensitivity matrix GB|D = GB|AGB|D.

We note that the unit normals associated with x∗1:m are given by ni = vA.

Analytical approximation for measuring a rectangular area

Suppose data points x1:m are distributed approximately on the plane z = 0
with −a ≤ xi ≤ a and −b ≤ yi ≤ b and J is the m × 3 Jacobian matrix
associated with fitting a plane to the data with J(i, 1 : 3) = (−1, xi, yi). This
Jacobian matrix corresponds to parametrization in terms of the z-coordinate
of xA and the x- and y-coordinates of vA, a = (zA, uA, vA)>. Then, using
the principle of Monte Carlo integration (I.55),

1

m
J>J ≈ Hab,

where

Hab =

 1 0 0
0 a2/3 0
0 0 b2/3

 . (I.62)

Set

Vab = H−1
ab =

 1 0 0
0 3/a2 0
0 0 3/b2

 . (I.63)

If the variance matrix associated with x1:m is approximated by σ2
RI, then

the standard uncertainties u(a) associated with the parameters is given by

u(a) =
σR√
m

(1,
√

3/a,
√

3/a)>. (I.64)

Thus, the uncertainty in the angle of rotation about the x-axis scales with
1/b by that associated with rotation about the y-axis scales with 1/a.
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I.5.6 Sensitivity matrix associated with a least-squares cylin-
der fit to data

The calculations associated with an axis give above in section I.5.1 allow us
to evaluate the sensitivity matrix associated with a least-squares cylinder fit
to data.

Procedure for evaluating the cylinder feature sensitivity matrix

Inputs

1. Cylinder axis locating point xA, unit axis direction vector vA, ‖vA‖ =
1, and cylinder radius r0.

2. Point coordinates coordinates x1:m for points lying on or close to the
cylinder surface specified by b where b> = (x>A,v

>
A, r0).

3. Weights w1:m, wi ≥ 0.

4. Coordinate index k specifying the parametrization of the cylinder to
be used.

Outputs

1. 7 × m sensitivity matrix GB|D of b with respect to changes in x1:m

normal to the cylinder surface, where b is determined from a weighted
least squares fit to the data.

2. 5×m sensitivity matrix GA|D of a with respect to changes in x1:m nor-
mal to the cylinder surface, where a are associated with the parametriza-
tion specified by k and is determined from a weighted least-squares fit
to the data.

3. Point coordinates x∗1:m of footpoints, i.e., x∗i is the point on the cylin-
der surface specified by b closest to xi.

4. Outward pointing unit normal vectors n1:m corresponding to x∗1:m.

5. m× 5 Jacobian matrix associated with an unweighted least-squares fit
and parameters a.
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Procedure

1. For each i = 1, . . . ,m, evaluate the vector cross product

ξi = (xi − xA)× vA,

calculating ξi = (ξi, ηi, ζi)
>, and set ri = ‖ξ‖ and di = ri − r0.

2. Assign the m × 7 Jacobian matrix JB: for each i = 1, . . . ,m, set
JB(i, 1 : 7) to be the vector

∂di
∂b

>
=

1

ri



ηiwA − ζivA
ζiuA − ξiwA
ξivA − ηiuA

ηi(zi − zA)− ζi(yi − yA)
ζi(xi − xA)− ξi(zi − zA)
ξi(yi − yA)− ηi(xi − xA)

−1



>

.

3. For each i = 1, . . . ,m, set ni = −JB(i, 1 : 3)> and x∗i = xi − dini.

4. Assign sensitivity matrix GB|A depending on k:

(a) if k = 1, set

GB|A =



0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 wA −vA 0
0 0 0 uA 0
0 0 −uA 0 0
0 0 0 0 1


;

(b) if k = 2, set

GB|A =



1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 −vA 0
0 0 −wA uA 0
0 0 vA 0 0
0 0 0 0 1


;

I-79



EUCoM D2 Report A Priori (type B) evaluation Method B1

(c) if k = 3, set

GB|A =



1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 wA 0
0 0 −wA 0 0
0 0 vA −uA 0
0 0 0 0 1


.

5. Form Jacobian matrix with respect to a: J = JBGB|A.

6. Form weighted Jacobian matrix JW : for each i = 1, . . . ,m, set JW (i, 1 :
5) = w2

i J(i, 1 : 5).

7. Form sensitivity matrix GA|D = −
(
J>JW

)−1
J>W .

8. Form sensitivity matrix GB|D = GB|AGB|D.

Analytical approximation for measuring a cylindrical patch

Suppose data points x1:m = (r0 cos θi, r0 sin θi, zi)
> are distributed approxi-

mately on a cylinder x2 + y2 = r2
0 with −α ≤ θi ≤ α ≤ π and −a ≤ zi ≤ a.

Let xA = (xA, yA, zA)> and vA = (uA, vA, wA)> specify the locating point
and direction vector of the cylinder axis. Parametrizing the cylinder in terms
of a = (xA, yA, uA, vA, r0)>, the associated m × 5 Jacobian matrix has ith
row given by

J(i, 1 : 5) = − [cos θi sin θi − zi sin θi zi cos θi 1] .

Then, using the principle of Monte Carlo integration (I.55),

1

m
J>J ≈ Haα,
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where the nonzero elements of Haα are specified by

Haα(1, 1) =
1

2α
(α+ (sin 2α)/2) ,

Haα(1, 5) = (sinα)/α

Haα(2, 2) =
1

2α
(α− (sin 2α)/2) ,

Haα(3, 3) =
a2

6α
(α− (sin 2α)/2) ,

Haα(4, 4) =
a2

6α
(α+ (sin 2α)/2) ,

Haα(5, 5) = 1.

For α = π, corresponding to data approximately uniformly space on the
cylindrical surface then

Haπ =


1/2 0 0 0 0
0 1/2 0 0 0
0 0 a2/6 0 0
0 0 0 a2/6 0
0 0 0 0 1

 ,
and

Vaπ = H−1
aπ =


2 0 0 0 0
0 2 0 0 0
0 0 6/a2 0 0
0 0 0 6/a2 0
0 0 0 0 1

 ,
showing that the uncertainties associated with the direction vector vA scale
with 1/a (but are independent of the radius r0). For general α, the elements
in the first, second and fifth rows and columns of Haα above are exactly
the same as the elements of Hα in (I.56) associated with the analysis of
measurements of an arc of a circle. In particular, the behaviour for mea-
surements of a section of a cylinder subtending a small angle can be derived
from the analysis on an arc of a circle. Let Vaα = H−1

aα . The matrix Vα
given by (I.60) is a submatrix of Vaα. For points approximately uniformly
distributed in −α ≤ θi ≤ α ≤ π, −a ≤ zi ≤ a and if the point cloud data
is associated with variance matrix VX = σ2

RI, then the variance matrix VA
associated with the fitted cylinder parameters a is approximated by

VA ≈
σ2
R

m
Vaα. (I.65)
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Table I.8: Square roots s(a) of the diagonal elements of Vaα in (I.65). For
points x1:m approximately uniformly distributed over a segment of a cylinder
with −α ≤ θi ≤ α ≤ π and −a ≤ zi ≤ a, and point cloud variance matrix
VX = σ2

RI, the uncertainties u(a) = σRs(a)/
√
m.

.

2α/deg s(xA) s(yA) as(uA) as(vA) s(r0)

360 1.41 1.41 2.45 2.45 1.00

270 1.81 1.28 2.22 2.76 1.14

180 3.25 1.41 2.45 2.45 2.30

160 3.96 1.51 2.61 2.31 2.97

140 5.00 1.65 2.85 2.18 3.98

120 6.62 1.85 3.20 2.06 5.56

100 9.30 2.14 3.71 1.96 8.23

80 14.25 2.61 4.51 1.88 13.16

60 24.95 3.40 5.89 1.81 23.85

40 55.54 5.02 8.70 1.77 54.42

20 220.70 9.95 17.24 1.74 219.58

α ≤ 5 deg

α/rad ≈
√

45/α2 ≈
√

3/α ≈ 3/α ≈
√

3 ≈
√

45/α2

Table I.5.6 shows the square roots s(a) of the diagonal elements of Vaα as a
function of a (the height of the cylinder is 2a) and α. For VX = σ2

R, u(a) =
σRs(a)/

√
m. For a small arc of a cylinder, α near zero, the uncertainties in

the x-coordinate of the axis locating point and the radius scale with 1/α2,
the y-coordinate of the axis locating point and the angle of rotation about
the x-axis scale with 1/α while the angle of rotation of about the y-axis is
well defined. The angles of rotation scale with 1/a.
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I.5.7 Sensitivity matrix associated with a least-squares cone
fit to data

The calculations associated with an axis given above in section I.5.1 and
a cylinder fit can be extended to evaluate the sensitivity matrix associated
with a least-squares cone fit to data. The calculations below are based
on specifying the cone in terms of an axes locating point xA, an axis unit
direction vector vA, cone radius r0, and cone angle φ. The radius parameter
is the radius of the circle defined by the intersection of the cone with the
plane passing through xA and orthogonal to vA, i.e., the set of points x
satisfying (x−xA)>vA = 0. The cone angle is the angle the cone generator
makes with cone axis, i.e., half the vertex angle, with the convention that
if φ > 0, then the vertex of the cone lies at xA + tvA with t > 0. While
it may be natural to use the cone vertex as the axis locating point, the
parametrization in terms of a radius remains stable for cone angles near
zero.

The distance d from a point x to a cone specified by b> = (x>A,v
>
A, r0, φ)>

is given by

d = d(x, b) = (cosφ)dC(x, b) + (sinφ)dP (x,a), (I.66)

where dC(x, b) is the distance of x to the cylinder specified by xA, vA and
r0 and dP (x, b) is the distance of x to the plane specified by xA and vA.

Procedure for evaluating the cone feature sensitivity matrix

Inputs

1. Cone axis locating point xA, unit axis direction vector vA, ‖vA‖ = 1,
and cone radius r0 at xA, and φ, the angle the cone generator makes
with the cone axes.

2. Point coordinates coordinates x1:m for points lying on or close to the
cylinder surface specified by b where b> = (x>A,v

>
A, r0, φ).

3. Weights w1:m, wi ≥ 0.

4. Coordinate index k specifying the parametrization of the cone to be
used.
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Outputs

1. 8 × m sensitivity matrix GB|D of b with respect to changes in x1:m

normal to the cone surface, where b is determined from a weighted
least squares fit to the data.

2. 6×m sensitivity matrix GA|D of a with respect to changes in x1:m nor-
mal to the cone surface, where a are associated with the parametriza-
tion specified by k and is determined from a weighted least-squares fit
to the data.

3. Point coordinates x∗1:m of footpoints, i.e., x∗i is the point on the cone
surface specified by b closest to xi.

4. Outward pointing unit normal vectors n1:m corresponding to x∗1:m.

5. m× 6 Jacobian matrix associated with an unweighted least-squares fit
and parameters a.

Procedure

1. For each i = 1, . . . ,m, evaluate the vector cross product

ξi = (xi − xA)× vA,

calculating ξi = (ξi, ηi, ζi)
>, and set ri = ‖ξ‖ and dC,i = ri − r0.

2. Assign the m× 7 Jacobian matrix JC,B associated with a cylinder fit:
for each i = 1, . . . ,m, set JC,B(i, 1 : 7) to be the vector

∂dC,i
∂b

>
=

1

ri



ηiwA − ζivA
ζiuA − ξiwA
ξivA − ηiuA

ηi(zi − zA)− ζi(yi − yA)
ζi(xi − xA)− ξi(zi − zA)
ξi(yi − yA)− ηi(xi − xA)

−1



>

.
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3. Set dP,i = (xi − xA)>vA and assign the m × 6 Jacobian matrix JP,B
associated with a plane fit: JP,B(i, 1 : 6) = [−v>A, (x− xA)>].

∂dC,i
∂b

>
=

1

ri



ηiwA − ζivA
ζiuA − ξiwA
ξivA − ηiuA

ηi(zi − zA)− ζi(yi − yA)
ζi(xi − xA)− ξi(zi − zA)
ξi(yi − yA)− ηi(xi − xA)

−1



>

.

4. Assign di = (cosφ)dC,i + (sinφ)dP,i and assign the m × 8 Jacobian
matrix JB:

• For j = 1, . . . , 6, set

JB(i, j) = (cosφ)JC,B(i, j) + (sinφ)JP,B(i, j), i = 1, . . . ,m.

• For j = 7, set

JB(i, j) = (cosφ)JC,B(i, j), i = 1, . . . ,m.

• For j = 8, set

JB(i, j) = −(sinφ)dC,i + (cosφ)dP,i, i = 1, . . . ,m.

5. For each i = 1, . . . ,m, set ni = −JB(i, 1 : 3)> and x∗i = xi − dini.

6. Assign 8 × 6 sensitivity matrix GB|A depending on k. Initialise all
elements to zero, set GB|A(7, 5) = GB|A(8, 6) = 1 and:

(a) if k = 1, set

GB|A(1 : 6, 1 : 4) =



0 0 0 0
1 0 0 0
0 1 0 0
0 0 wA −vA
0 0 0 uA
0 0 −uA 0

 ,
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(b) if k = 2, set

GB|A(1 : 6, 1 : 4) =



1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 −vA
0 0 −wA uA
0 0 vA 0

 ;

(c) if k = 3, set

GB|A(1 : 6, 1 : 4) =



1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 wA
0 0 −wA 0
0 0 vA −uA

 .

7. Form Jacobian matrix with respect to a: J = JBGB|A.

8. Form weighted Jacobian matrix JW : for each i = 1, . . . ,m, set

JW (i, 1 : 6) = w2
i J(i, 1 : 6).

9. Form sensitivity matrix GA|D = −
(
J>JW

)−1
J>W .

10. Form sensitivity matrix GB|D = GB|AGB|D.

Analytical approximation for measuring a patch of a cone

Suppose data points x1:m = (ri cos θi, ri sin θi, zi)
>, ri = r0 − tanφzi, are

distributed approximately on a cone with xA = 0, vA = (0, 0, 1)>, with
−α ≤ θi ≤ α ≤ π and −a ≤ zi ≤ a. Parametrizing the cone in terms of
a = (xA, yA, uA, vA, r0, φ)>, the associated m × 6 Jacobian matrix has ith
row given by

J(i, 1 : 6) =



− cosφ cos θi
− cosφ sin θi
wi sin θi
−wi cos θi
− cosφ
zi/ cosφ

 , wi = zi/ cosφ− r0 sinφ.
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Table I.9: Square roots s(a) of the diagonal elements of Vaαφ as a function
of φ. For points x1:m approximately uniformly distributed over cone with
cone angle φ, −π ≤ θi ≤ π and −a ≤ zi ≤ a, a = 100 and point cloud
variance matrix VX = σ2

RI, the uncertainties u(a) = σRs(a)/
√
m.

.

φ/deg s(xA) s(yA) s(uA) s(vA) s(r0) s(φ)

0 1.41 1.41 0.05 0.05 1.00 0.03

10 1.71 1.71 0.05 0.05 1.02 0.03

20 2.38 2.38 0.05 0.05 1.07 0.03

30 3.21 3.21 0.04 0.04 1.17 0.03

40 4.14 4.14 0.04 0.04 1.35 0.03

50 5.28 5.28 0.03 0.03 1.66 0.02

60 7.12 7.12 0.03 0.03 2.31 0.02

70 13.59 13.59 0.03 0.03 4.80 0.02

Then, using the principle of Monte Carlo integration (I.55),

1

m
J>J ≈ Haαφ,

where the nonzero elements of Haαφ are given by the integrals of functions
of θ, z and φ determined from the form of the Jacobian matrix above.
The integrals are somewhat more complicated than the other cases already
considered but can be easily evaluated using one dimensional quadrature
routines [37]. Here we give some example calculations. Table I.9 shows the
square roots s(a) of the diagonal elements of Vaαφ = Haαφ as a function of φ
for the case α = π, r0 = 50 and a = 100. For VX = σ2

R, u(a) = σRs(a)/
√
m.

As φ approaches 90 degrees, the uncertainties associated with xA, yA and
r0 increase markedly.

Table I.10 shows the square roots s(a) of the diagonal elements of Vaαφ as
a function of α. For VX = σ2

R, u(a) = σRs(a)/
√
m. For a small arc of a

cone, α near zero, the uncertainties associated with xA, uA, vA, r0 and φ
scale with 1/α2 while those associated with the yA and uA scale with 1/α.
No parameter is well defined.
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Table I.10: Square roots s(a) of the diagonal elements of Vaαφ as a function
of α. For points x1:m approximately uniformly distributed over a segment
of a cone with cone angle φ = 45 degrees, −α ≤ θi ≤ α ≤ π and −a ≤
zi ≤ a, and point cloud variance matrix VX = σ2

RI, the uncertainties u(a) =
σRs(a)/

√
m.

.

2α/deg s(xA) s(yA) as(uA) as(vA) s(r0) s(φ)

360 4.06 4.06 0.04 0.04 1.73 0.03

270 5.21 3.69 0.04 0.05 1.97 0.03

180 9.33 4.06 0.04 0.10 3.98 0.07

160 11.37 4.34 0.05 0.12 5.14 0.09

140 14.37 4.73 0.05 0.15 6.89 0.12

120 19.01 5.30 0.06 0.20 9.64 0.17

100 26.72 6.15 0.06 0.28 14.25 0.25

80 40.94 7.48 0.08 0.43 22.79 0.39

60 71.67 9.77 0.10 0.75 41.31 0.72

40 159.51 14.43 0.15 1.67 94.27 1.63

20 633.90 28.59 0.30 6.62 380.32 6.59

I.5.8 Sensitivity matrix associated with fitting a point cloud
to a CAD model

Suppose that x∗1:m lie on a design surface S given parametrically u 7→ s(u)
and that the normal vector to the surface S at x∗i is n∗i . Suppose x1:m are
measurements of x∗1:m and that t solves least squares orthogonal distance
regression problem

min
t

m∑
i=1

d2(x̂i,S),

where

x̂i =
1

1 + S
R(α)(xi − x0), t =

[
x0

α

]
.

In these calculations, t defines a transformation involving translation vector
x0, rotation angles α and parameter S setting a global scale adjustment that
maps the data x1:m as close as possible to the design surface S according
to the least-squares criterion. Uncertainties associated with the measured
data can be propagated through to the fitted parameters t using the general
scheme for least-squares fitting described in section I.5.2. If the solution t
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is given by t = 0 then the m× 7 Jacobian matrix at the solution is given by

J(i, 1 : 7)> =

 −n∗i
x∗i × n∗i
−x>i n∗i

 .
Note that this Jacobian matrix depends on the shape of the surface only
through x∗i and n∗i . Hence, given any freeform surface and a measurement
strategy defined by x∗i the associated normal vectors n∗i can then be calcu-
lated allowing J and derived sensitivity matrices to be evaluated.

If the surface S has symmetries, e.g., with respect to translation along the
z-axis or rotation about the z-axis, then the corresponding column of the
Jacobian matrix can be removed. Similarly, if no global scale adjustment is
desired, the final column of J can be removed.

The scheme above assumes that the solution parameter vector t is near zero.
For the more general case, suppose the solution t0 defines the 3× 3 rotation
matrix R0 and that the global scale correction parameter is S0 and that VX
is the 3m× 3m variance matrix associated with the point cloud x1:m. Then
the variance matrix V

X̂
associated with the transformed data x̂1:m is given

by

V
X̂

=
1

(1 + S0)2
RVXR

>,

where R is the 3m × 3m block diagonal matrix with R0 on the diagonal
blocks. The variance matrix V

X̂
can then be propagated through to t = 0

using the scheme above, where t is now regarded as adjusting the fixed t0.
If G

T |X̂ is the sensitivity of t with respect to x̂1:m, then the sensitivity of t

with respect to x1:m is given by

GT |X =
1

(1 + S0)2
G
T |X̂R.
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I.5.9 Uncertainty contribution associated with establishing
a datum

See also [22, 18]. Many procedures to establish a datum frame of reference
from measured coordinates x1:m can be written in terms of establishing
a rigid body transformation to satisfy six frame of reference constraints.
For example, in the calibration of 3 dimensional reference artefacts such as
ball-plates, it is usual to specify the frame of reference of the ball centres by
having one ball centred at the origin, x1 = 0, a second centred on the x-axis,
y2 = z2 = 0, and a third positioned in the xy-plane, z3 = 0, six constraints
in all. These constraints can usually be written as C>x1 : m = c0, where C
is a 3m× 6 matrix.

Let x1:m, associated point cloud variance matrix VX , constraint matrix C
and c0 be given with the assumption that C>x1:m ≈ c0, that is, x1:m

approximately satisfies the frame of reference constraints. Define x̂ by

x̂i(t) = T (x, t) = R(α)(xi − x0), (I.67)

a rigid body transformation. We look for t such that x̂1:m satisfies the frame
of reference constraints exactly: C>x̂1:m = c0. Since x1:m approximately
satisfies the constraints, to first order approximation, x̂1:m = x1:m + Gt
where G is the 3m× 6 matrix of partial derivatives of x̂1:m with respect to
t evaluated at t specifying the identity transformation. We note here that
G constructed from 3× 6 blocks

Gi =

 1 0 0 0 −zi yi
0 1 0 zi 0 −xi
0 0 1 −yi xi 0

 . (I.68)

To first order, t is defined by the equation C>(x1:m + Gt) = c0 so that
t = (C>G)−1(c0 − C>x1:m). The 6× 3m sensitivity matrix GT |X of t with
respect to x1:m is therefore

GT |X = −(C>G)−1C>. (I.69)

If the variance matrix associated with x1:m is VX , then the variance matrix
VT |X associated with t is given by

VT |X = GT |XVXG
>
T |X . (I.70)

Applying T defined by t to x1:m, to first order,

x̂1:m = x1:m +G(C>G)−1(c0 − C>x1:m). (I.71)
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This last equation defines x̂1:m as a linear function of x1:m and allows us
to propagate the variance VX associated with x1:m through to that, V

X̂
,

associated with x̂1:m:

V
X̂

= (I −G(C>G)−1C>)VX(I −G(C>G)−1C>)>.

If the transformation T , defined by t, is applied to another data set z1:p

with ẑq = T (xq, t) and GZ is the 3p× 6 sensitivity matrix constructed from
z1:p as in (I.68, then the variance contribution to the transformed data ẑ1:m

is given by
V
Ẑ

= GZVT |XG
>
Z = GZ|XVXG

>
Z|X , (I.72)

where GZ|X = GZGT |X . In other words, V
Ẑ

is the variance contribution
to the variance associated with z1:p arising from the procedure to establish
a datum frame of reference from x1:m. If x1:m is correlated with z1:m, for
example, if they are measured at the same time using the same CMM as is
often the case and the joint variance matrix associated with them is given
by [

VX VXZ
V >XZ VZ

]
,

then the variance matrix V
Ẑ|X associated with ẑ1:m is given by

V
Ẑ|X = GZ|XVXG

>
Z|X +GZ|XVXZ + V >XZG

>
Z|X + VZ .

The expression for V
Ẑ|X includes the variance contribution associated with

both x1:m and z1:p taking into account their correlation.
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I.6 Effect of form error on extracted features

Given surface points si = s(ui,a) on idea design surface with normal vectors
ni, i ∈ I = {1, . . . ,m}, we can model form errors with an actual workpiece
according to

x∗i = si + fini.

We provide statistical model for the form errors by assigning

f ∈ N (0, VF ),

where VF is an m ×m variance matrix. The variance contribution to x∗1:m

is given by
VX|F = NVFN

>,

where N the 3m×m block-diagonal matrix constructed from n1:m, as before.
We use a spatial correlation model for VF of the form

VF = σ2
F0
I + VEF (s1:m|σF ,λF ), (I.73)

with
VEF (i, j) = σ2

F e
−d2F,ij , (I.74)

where

d2
F,ij = (si − sj)>MF (si − sj)>, MF =

 1/λ2
F,x 0 0

0 1/λ2
F,y 0

0 0 1/λ2
F,z

 .
The first term on the right of equation models variation in the surface ge-
ometry over short length scales, that is, roughness effects. The form of MF

above allows spatially correlated components to be anisotropic, e.g., we may
wish to assign different length scales to straightness and circularity compo-
nents of the form error of a cylinder. Note that the spatial correlation is
determined by the point of contact on the design surface where as spatially
correlated location errors, section I.3.7, need to take into account probe
offsets.

If GA|X = GA|DN
> is the sensitivity of features a with respect to a point

cloud x1:m then the variance contribution VA|F for the form errors to a is
given by

VA|F = GA|XVX|FG
>
A|X = GA|DVFG

>
A|D

= σ2
F0
GA|DG

>
A|D +GA|DVEFG

>
A|D. (I.75)
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I.7 Uncertainties for derived features using Monte
Carlo sampling and the point cloud variance
matrix

The methods described in sections I.4 to I.5.9 are all based on deriving
the sensitivity matrix GA|X that is used to construct the variance matrix
VA for the derived features a from the variance matrix VX associated with
the point cloud x1:m. For the features involved, the functional relationship
a = f(x1:m) of a on the point cloud is smooth and almost linear so that the
first order approximation of f and the application of the law of propagation
of uncertainty (I.1) is very effective in estimating uncertainties associated
with the derived features. As noted in section I.2.1, for features derived
according to Chebyshev and related criteria, the functional relationship is
not smooth and the first order approximation of f might not be fit for
purpose.

An alternative approach is to use a Monte Carlo sampling approach [3] as
summarised by (I.2), generating point cloud data sets x1:m,q and derived
features aq = aq(x1:m,q) for each data set, q = 1, . . . ,M . The variance
matrix associated with the sample a1:m is an approximation to VA. In
order to implement the Monte Carlo approach, it is necessary to be able
to generate data sets Xq that are samples from the distribution associated
with the point cloud. This is quite straightforward to implement. If the
point cloud variance matrix VX associated with x1:m can be factored as
VX = KK> (for example, from an eigenvalue decomposition), then if δ1:m

is a sample from the standard multivariate Gaussian distribution11 δ1:m,q ∈
N (0, I) then

x1:m,q = x1:m +Kδ1:m,q,

is associated with variance matrix VX .

11Each element of δ1:m,q is a sample from the standard normal distribution N (0, 1).
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I.8 Example calculations

I.8.1 Three statistical characterisations based on MPE state-
ments

The simulations involve characterisations of CMM behaviour based on three,
MPE statements, the first, MPE1, with A = 0.5 µm and B = 500.0 mm,
the second, MPE2, with A = 1.0 µm and B = 200.0 mm, the third, MPE3
with A = 2.0 µm and B = 125.0 mm. These MPE statements have been
used to estimate the statistical parameters characterising the CMM influ-
ence factors. These prior estimates are given in table I.11. The second MPE
characterisation is essentially twice the first and the derived statistical pa-
rameters, σR, σS , etc., in column 5 of table I.11 are twice those in column
4; the length scale parameters λET , etc., are the same. The third MPE
has a slightly different balance between A and B and the derived statis-
tical parameters in column 6 in table I.11 are not a simple scaling of the
parameters in columns 4 and 5. The statistical characterisations in terms of
length measurement are illustrated in figures I.9–I.11. These figures show
compares twice the estimated standard uncertainty u(d) as a function of
distance d, and contributions relating to scale and squareness effects (S),
location effects (ET) and rotational effects (ER) compared with the MPE
statement A+ d/B for the two characterisations.
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Effect Parameter Unit MPE1 MPE2 MPE3

MPE A µm 0.5 1.0 2.0
B mm 500.0 250.0 200.0

Repeatability σR µm 0.10 0.20 0.40

Scale, squareness σS 10−6 0.7 1.4 1.8
σS,a 10−6 0.7 1.4 1.8
σQ 10−6 0.7 1.4 1.8

Probe qualification σPQ µm 0.10 0.20 0.4

Location σET µm 0.17 0.33 0.67
λET mm 125.0 125.0 125.0

Rotation σER µrad 2.0 4.0 5.0
λER mm 125.0 125.0 125.0

Probing σP0 µm 0.07 0.14 0.28
σP µm 0.10 0.20 0.40
λP 1 0.50 0.50 0.50

Table I.11: Three sets of statistical parameters estimated from MPE state-
ments of the form A+ d/B.
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Figure I.9: Twice the estimated standard uncertainty u(d) as a function of
distance d, and contributions relating to scale and squareness effects (S),
location effects (ET) and rotational effects (ER) compared with the MPE
statement A+ d/B (upper straight line) for statistical parameters given in
the third column in table I.11.
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Figure I.10: As figure I.9 but with the statistical parameters given in the
fourth column in table I.11.
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Figure I.11: As figure I.9 but with the statistical parameters given in the
fifth column in table I.11.
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I.8.2 Step gauge

The first set of calculations involve simulations measurements of a step gauge
with 26 steps of nominal length 10 mm situated at 20 mm intervals along a
measuring line. The simulations reported on here involve two scenarios. In
each scenario the step gauge is aligned with the x-axis.

Scenario I. This scenario assumes i) the 52 step faces are measured with
the same probe with probe offset p = (0.0, 0.0,−20.0)> mm.

Scenario II. This scenario assumes ii) the 26 left-facing faces are mea-
sured with a probe with offset pL = (0.0, 20.0, 0.0)> mm and the
26 right-facing faces are measured with a probe with offset pR =
(0.0,−20.0, 0.0)> mm.

The extracted features derived from the measurements are:

dij The distances between all faces, with dij = ‖xi − xj‖.

dLL,ij The distances between left-facing faces.

dRR,ij The distances between right-facing faces.

dFF,k The estimated length of each step.

Table I.12 gives the standard uncertainty associated with the location x>1 n1

of the first face of the step gauge for the step gauge for scenario I and
three sets of statistical parameters given in columns 3–5 of table I.11, along
with the uncertainty contributions associated with the various effects. The
contributions for scenario II are largely the same. Figures I.12–I.14 plot
twice the estimated standard uncertainty u(d) associated with distances
derived from measurements of a step gauge under scenario I and statistical
parameters given by columns 3–5 of table I.11 for the different extracted
features discussed above. The label ‘LL’ relates to distances between left-
facing faces, ‘RR’ to distances between right-facing faces and ‘FF’ to the
distances between the step faces for each step. Also plotted is the MPE
function A+ d/B (upper straight line). Figures I.15–I.17 provide the same
information as figures I.12–I.14 but for scenario II. We note the following.

• Table I.12 shows that all influence factors contribute directly to the
uncertainties associated with x>i n. The rotational effects contribution
(ER) is small but would be larger for a longer probe offset.
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• Figures I.12–I.14 show the difference between measurements of dis-
tances using the same probing direction, ‘LL’, and ‘RR’ and measure-
ments of distances involving both probing directions, ‘FF’, for exam-
ple, in terms of associated uncertainties. For the former case, probing
effects make no contribution; for the later case, the make a direct and
full contribution. For both cases (in scenario I), the probe qualification
effects make no contribution.

• Figures I.15–I.17 show the same behaviour as figures I.12–I.14 but
also reflect the fact that probe qualification effects also contribute di-
rectly to the uncertainties associated with measurements for distances
involving both probing directions.

Figure I.12: Twice the estimated standard uncertainty u(d) associated with
distances derived from measurements of a step gauge under scenario I and
statistical parameters given by the third column of table I.11, MPE1. The
label ‘LL’ relates to distances between left-facing faces, ‘RR’ to distances
between right-facing faces and ‘FF’ to the distances between the step faces
for each step. Also plotted is the MPE function A + d/B (upper straight
line).
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Figure I.13: As figure I.12 but for statistical parameters given by the fourth
column of table I.11, MPE2.

u uR uPQ uS uET uER uP

MPE1 0.36 0.10 0.10 0.26 0.17 0.04 0.12

MPE2 0.72 0.20 0.20 0.51 0.33 0.08 0.24

MPE3 1.19 0.40 0.40 0.64 0.67 0.10 0.49

Table I.12: Standard uncertainty associated with the location x>1 n1 of the
first face of the step gauge for the step gauge for scenario I and three sets
of statistical parameters given in columns 3–5 of table I.11.
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Figure I.14: As figure I.12 but for statistical parameters given by the fifth
column of table I.11, MPE3.

Figure I.15: As figure I.12 but for scenario II.
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Figure I.16: As figure I.13 but for scenario II.

Figure I.17: As figure I.14 but for scenario II.
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b1 b2 b3

xA/mm 0.0 0.0 0.0
0.0 140.0 0.0
0.0 0.0 10.0

vA 0.0 0.0 0.0
0.0 0.0 0.0
1.0 1.0 1.0

r0/mm 25.3 9.5

Table I.13: Parameters specifying the geometric elements associated with
the connecting rod.

I.8.3 Connecting rod

The second set of calculations involves the connecting rod involving two
cylindrical geometric elements and one plane element (the datum plane),
specified by locating points, direction vectors, and for the cylinders, radii;
see diagram I.18. The parameter vectors associated with the elements are
given in table I.13. The measurement strategy involved gathering 16 points
at three parallel circles on each of the two cylinders and 8 points in a circular
pattern on the planar surface.

The simulations reported on here involve two scenarios:

Scenario I. This scenario assumes i) the measured points on the cylinders
are distributed uniformly around the cylindrical surface and that all
elements (two cylinders, one plane) are measured using the same probe
with probe offset p = (0, 0,−20)>.

Scenario II. This scenario assumes ii) the measured points on the large
cylinder are distributed on a 120◦ arc at bottom end of the connecting
rod (figure I.18) and the measured points on the small cylinder are
distributed on a 120◦ at the top end of the rod, and ii) the two cylinders
are measured with two different probes, each with nominal probe offset
pk = (0, 0,−20)>, k = 1, 2, but subject to different probe qualification
effects.

Table I.14 shows the estimates of the uncertainties associated with the ex-
tracted features and derived features for scenario I and MPE1. The ex-
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Figure I.18: Connecting rod workpiece with three geometric elements.
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tracted features are related to the parameters associated with the two cylin-
ders and plane:

xA, yA The x- and y-coordinates associated with the locating point xA asso-
ciated with the two cylinders.

zA The z-coordinate associated with the locating point xA associated with
the plane.

uA, vA The x- and y-coordinates associated with the direction vectors vA
associated with the two cylinders and the plane.

r0 The radii associated with the two cylinders.

(All other elements of the locating points and direction vectors are held
constant.) The uncertainties following derived features are also evaluated:

d12 the distance between the axis location points xA for the two cylinders
as measured in the plane z = 0.

α12,x the angle of rotation about the y-axis between the two cylinder direc-
tion vectors vA, i.e., the x-components of the direction vectors.

α12,y the angle of rotation about the x-axis between the two cylinder direc-
tion vectors vA, i.e., the y-components of the direction vectors.

Table I.14 also shows the uncertainty contributions from the various influ-
ence factors: random effects (R), probe qualification effects (PQ), scale and
squareness effects (S), and spatially correlated location (ET), rotation (ER)
and probing effects (P), the latter three all assumed to be isotropic in that
the behaviour for each axis is the same. We note the following.

R The random effects uncertainty contribution to the x- and y-coordinates
of the cylinder location points (0.02 mm) is approximately

√
2 times

that to radii r0 in line with the analysis in section I.5.6. The contri-
bution is small due to the averaging effect over m = 48 data points.

PQ The uncertainty associated with probe qualification contributes di-
rectly and in full to the uncertainties associated with the location point
parameters, but does not contribute to the derived features since the
probe qualification effect is modelled as a constant offset for measure-
ments.
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S The scale and squareness effects make minimal contribution to the
locating point associated with the first cylinder since its location point
is at the origin. The scale and squareness effects contribute more
significantly to the location of the small cylinder b2. The scale effects
contribute directly to the uncertainty associated with the distance d12

between the two cylinder axes.

ET The spatially correlated location effects contribute to the uncertainties
associated with the location point parameters. The spatial correlation
length λET =125 mm is greater than the cylinder radii so that the
location effects in the neighbourhood are significantly correlated and
act somewhat like a probe qualification effect. For the same reason,
they make minimal contribution to the uncertainties associated with
the radii r0. The correlation length λET is larger that the distance
d12 = 140 mm between the two cylinder axes so that no significant
cancellation of these effects arise, leading to a significant contribution
to u(d12).

ER Rotational effects contribute only modestly to the uncertainties asso-
ciated with the features. Their contributions scale directly with probe
offset length.

P The probe radius uncertainty represented by σP0 contributes directly
and fully to the uncertainty associated with the cylinder radii r0. Since
the probing directions for the two cylinders are exactly the same, the
probing effects make no contributions to the uncertainties associated
with the derived features d12, α12,x and α12,y.

Table I.15 gives the same uncertainty estimates but for scenario II with
statistical parameters for MPE1 as in the third column of table I.11. We
note the following.

R The uncertainty contribution from random effects to u(yA) and u(r0)
are much greater due to the fact that only a 120◦ arc of the cylinder
is measured, as discussed in section I.5.6; see also table I.5.6.

PQ Whereas for scenario I, probe qualification had no uncertainty contri-
bution to u(d12) since both cylinders were associated with the same
probe qualification effect, in scenario II, these effects are independent
and make a direct and full contribution to u(d12).
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P For scenario II, the probing directions for the two cylinders are com-
pletely different and probing effects contribute directly to u(d12). They
do not make a contribution to u(α12,x) and u(α12,y) since the probing
strategy for each of the three circular profiles on each cylinder is the
same.

Tables I.16 and I.17 give the uncertainty estimates but for scenarios I and
II, respectively with statistical parameters for MPE3 as in the fifth column
of table I.11. The tables show the same behaviour as tables I.14 and I.16
and the comments above apply.
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u uR uPQ uS uET uER uP

xA/µm 0.20 0.02 0.10 0.01 0.16 0.04 0.05
yA/µm 0.20 0.02 0.10 0.01 0.16 0.04 0.05
uA/µrad 3.70 3.12 0.00 0.71 1.81 0.43 0.00
vA/µrad 3.70 3.13 0.00 0.71 1.81 0.43 0.00
r0/µm 0.09 0.01 0.00 0.02 0.03 0.01 0.08

xA/µm 0.23 0.02 0.10 0.10 0.17 0.04 0.05
yA/µm 0.25 0.02 0.10 0.14 0.17 0.04 0.05
uA/µrad 6.58 6.25 0.00 0.71 1.87 0.45 0.00
vA/µrad 6.58 6.25 0.00 0.71 1.87 0.45 0.00
r0/µm 0.08 0.01 0.00 0.01 0.01 0.00 0.08

zA/µm 0.23 0.04 0.10 0.03 0.16 0.00 0.12
uA/µrad 2.60 1.87 0.00 0.00 1.80 0.00 0.00
vA/µrad 2.60 1.87 0.00 0.00 1.80 0.00 0.00

d12/µm 0.24 0.03 0.00 0.14 0.19 0.05 0.00
α12,x/µrad 7.34 6.99 0.00 0.00 2.19 0.53 0.00
α12,y/µrad 7.33 6.99 0.00 0.00 2.16 0.52 0.00

Table I.14: Standard uncertainties associated with derived features for the
connecting rod for scenario I and statistical parameters for MPE1 as in the
third column of table I.11.
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u uR uPQ uS uET uER uP

xA/µm 0.22 0.03 0.10 0.02 0.17 0.04 0.10
yA/µm 0.37 0.10 0.10 0.04 0.19 0.05 0.28
uA/µrad 4.57 4.08 0.00 0.71 1.88 0.45 0.00
vA/µrad 3.33 2.63 0.00 0.71 1.87 0.45 0.00
r0/µm 0.26 0.08 0.00 0.03 0.08 0.02 0.23

xA/µm 0.25 0.03 0.10 0.10 0.17 0.04 0.10
yA/µm 0.38 0.10 0.10 0.15 0.17 0.04 0.28
uA/µrad 8.43 8.17 0.00 0.71 1.88 0.45 0.00
vA/µrad 5.64 5.25 0.00 0.71 1.88 0.45 0.00
r0/µm 0.25 0.08 0.00 0.01 0.03 0.01 0.23

zA/µm 0.23 0.04 0.10 0.03 0.16 0.00 0.12
uA/µrad 2.60 1.87 0.00 0.00 1.80 0.00 0.00
vA/µrad 2.60 1.87 0.00 0.00 1.80 0.00 0.00

d12/µm 0.53 0.14 0.14 0.17 0.25 0.06 0.39
α12,x/µrad 9.47 9.13 0.00 0.00 2.42 0.58 0.00
α12,y/µrad 6.39 5.87 0.00 0.00 2.44 0.58 0.00

Table I.15: Standard uncertainties associated with derived features for the
connecting rod for scenario II and statistical parameters for MPE1 as in
the third column of table I.11. The uncertainty contribution from effects
associated with probe qualification and probing are highlighted in bold.
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u uR uPQ uS uET uER uP

xA/µm 0.79 0.08 0.40 0.04 0.64 0.10 0.21
yA/µm 0.79 0.08 0.40 0.04 0.64 0.10 0.21
uA/µrad 14.58 12.50 0.00 1.77 7.22 1.08 0.00
vA/µrad 14.58 12.50 0.00 1.77 7.22 1.08 0.00
r0/µm 0.36 0.06 0.00 0.05 0.13 0.02 0.32

xA/µm 0.85 0.08 0.40 0.25 0.66 0.10 0.21
yA/µm 0.88 0.08 0.40 0.35 0.66 0.10 0.21
uA/µrad 26.18 25.00 0.00 1.77 7.49 1.12 0.00
vA/µrad 26.18 25.00 0.00 1.77 7.49 1.12 0.00
r0/µm 0.33 0.06 0.00 0.02 0.05 0.01 0.32

zA/µm 0.91 0.14 0.40 0.07 0.64 0.00 0.49
uA/µrad 10.39 7.48 0.00 0.00 7.21 0.00 0.00
vA/µrad 10.39 7.48 0.00 0.00 7.21 0.00 0.00

d12/µm 1.07 0.12 0.57 0.35 0.76 0.11 0.29
α12,x/µrad 29.32 27.95 0.00 0.00 8.75 1.31 0.00
α12,y/µrad 29.29 27.95 0.00 0.00 8.64 1.30 0.00

Table I.16: Standard uncertainties associated with derived features for the
connecting rod for scenario I and statistical parameters as in the fifth column
of table I.11.
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u uR uPQ uS uET uER uP

xA/µm 0.88 0.11 0.40 0.05 0.66 0.10 0.38
yA/µm 1.46 0.39 0.40 0.11 0.76 0.11 1.10
uA/µrad 18.10 16.34 0.00 1.77 7.51 1.13 0.00
vA/µrad 13.06 10.51 0.00 1.77 7.47 1.12 0.00
r0/µm 1.04 0.32 0.00 0.09 0.32 0.05 0.93

xA/µm 0.92 0.11 0.40 0.26 0.67 0.10 0.38
yA/µm 1.46 0.39 0.40 0.37 0.68 0.10 1.10
uA/µrad 33.60 32.68 0.00 1.77 7.53 1.13 0.00
vA/µrad 22.42 21.02 0.00 1.77 7.53 1.13 0.00
r0/µm 0.99 0.32 0.00 0.03 0.12 0.02 0.93

zA/µm 0.91 0.14 0.40 0.07 0.64 0.00 0.49
uA/µrad 10.39 7.48 0.00 0.00 7.21 0.00 0.00
vA/µrad 10.39 7.48 0.00 0.00 7.21 0.00 0.00

d12/µm 2.06 0.55 0.57 0.43 0.99 0.15 1.56
α12,x/µrad 37.83 36.53 0.00 0.00 9.69 1.45 0.00
α12,y/µrad 25.48 23.50 0.00 0.00 9.75 1.46 0.00

Table I.17: Standard uncertainties associated with derived features for the
connecting rod for scenario II and statistical parameters for MPE3 as in the
fifth column of table I.11.
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I.9 Validation of the a priori method

I.9.1 Measurements of a calibrated artefact

Suppose an artefact has associated features a = (a1, . . . , an)> and that prior
information from a previous calibration is available and is summarised by

aC ∈ N (a, VC).

We interpret this statement that the calibrated values aC is a draw from
a multivariate Gaussian (normal) distribution with (unknown) mean a and
variance matrix VC . Suppose also that a proposed measurement strategy
x1:m is defined and that a statistical characterisation of the CMM to be
used to measure the artefact is also defined. For example, the statistical
characterisation could be derived from an MPE statement, as discussed in
section I.4.8. The statistical characterisation allows the point cloud variance
matrix VX to be estimated and, given the sensitivity matrix GA|X of a with
respect to x1:m, the variance matrix VA associated with the estimate â
derived from VX :

VA = GA|XVXG
>
A|X .

The statistical characterisation states that any estimate â of a derived from
measurements of the artefact by the CMM is such that

â ∈ N (a, VA).

Assuming that the calibration experiment and the CMM measurement are
completely independent experiments (from the statistical point of view), we
have

â− aC ∈ N (0, VA + VC). (I.76)

Letting
WAC = (VA + VC)−1 ,

(assuming the inverse exists) the relationship (I.76) implies that

R2 = (â− aC)>WAC(â− aC) ∈ χ2
n,

a draw from a χ2 distribution with n degrees of freedom. The observed value
R2 can be compared with quantiles of the χ2 distribution to determine the
probabilities

α(R2) = Pr(ξ2 ≥ R2|ξ2 ∼ χ2
n), β(R2) = Pr(ξ2 ≤ R2|ξ2 ∼ χ2

n).
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If these probabilities are not too small, say greater that 0.05, the variance
matrix VA (and hence VX) can be regarded as a plausible statement of the
CMM uncertainty. Conversely, if α(R2) < 0.05, (β(R2) < 0.05), there is ev-
idence that VA understates (overstates) the uncertainty associated with the
CMM measurements (assuming that the calibration information is valid).

Relationship to normalised errors

For the case n = 1, the test of consistency of â and VA with the calibration
information described above is related to the use of normalised errors in
assessing consistence of a test result with a reference value [28]. For the
univariate case we write

â ∈ N (a, u2(a)), aC ∈ N (a, u2
C), â− aC ∈ N (0, u2(a) + u2

C)

and

R2 =
(â− aC)2

u2(a) + u2
C

∈ χ2
1.

Since the probability density function pχ2(x|ν = 1) associated with a χ2

distribution with one degree of freedom is such that pχ2(x|ν = 1) ∝ e−x/2,

α(R2) = Pr(ξ2 ≥ R2|ξ2 ∼ χ2
1) = Pr(|ξ| ≥ R|ξ ∼ N (0, 1)),

so that requiring α(R2) ≥ 0.05 is equivalent to requiring that

En =
|â− aC |

2
√
u2(a) + u2

C

≤ 1.

Calibrated form error

While associated features such as the radius of a cylinder derived from CMM
measurements can be used to valid an a priori uncertainty budget, if there
are only a small number of calibrated features the information available
for validation is small. The estimated form errors derived from fitting a
geometric element, such as a cylinder, to data potentially is a richer source of
validation information. Suppose x1:m are measured points associated with a
calibrated surface u 7→ s(u,a), depending on parameters a = (a1, . . . , an)>,
whose geometric form is known exactly, e.g., an ideal geometric element such
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as a cylinder and that d1:m = d(x1:m, â) are the residual distances associated
with the least squares best-fit surface to x1:m defined by parameter estimates
â. Suppose also that VX is the point cloud variance matrix associated
with x1:m derived using an a priori method (or otherwise). As discussed in
section I.5.2, it is possible to derive the sensitivity matrix G

D̂|X of d with

respect to x1:m and evaluate the variance matrix V
D̂

associated with d:

V
D̂

= G
D̂|XVXG

>
D̂|X .

As discussed in section I.5.2, the sensitivity matrix G
D̂|X can be factored as

G
D̂|X = Q2Q

>
2 N

>,

where Q2 is an m × (m − n) orthogonal matrix. As a consequence, V
D̂

is
necessarily rank deficient and its inverse cannot be formed. However, the
projected residuals d̃ = Q>2 d are such that

d̃ ∈ N (0, VD̃), VD̃ = Q>2 VD̃Q2,

and VD̃ is (in almost all practical cases) full rank. Hence

R̃2 = d̃
>
V −1
D̃
d̃ ∈ χ2

m−n

and can be used to assess the validity of VX , assuming that the surface
s(u,a) is free from form error.

More generally, if xi is measurement of si+fini where fi represents the form
error measured orthogonally to the surface at si (as discussed in section I.6),
and the form error has been characterised as

f ∈ N (f0, VF ),

in a prior calibration exercise, for example, then

d̃− f̃0 ∈ N (0, VD̃ + VF̃ ), f̃0 = Q>2 f0, VF̃ = Q>2 VFQ2,

enabling a validation assessment on the basis of the value of the hypothesis

R̃2(f0) = (d̃− f̃0)>WDF (d̃− f̃0), WDF = (VD̃ + VF̃ )−1 ∈ χ2
m−n.

If the only available prior information about f is that |f1:m| ≤ F , then we
set f0 = 0 and VF can be estimated by

VF ≈
F 2

K2
I,

for example, for K = 2, say.
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I.9.2 Repositioning experiments

The validation approaches discussed above in section I.9.1 depend on having
external calibration information available. In a repositioning experiment,
the same artefact is measured using nominally the same measurement strat-
egy in a number of positions, k = 1, . . . , nK , in the working volume, possibly
with repeat measurements in nominally the same position, gathering data
sets Xk and associated extracted features ak. Since the artefact has is nom-
inally the same in each position (although there may be influence factors
relating fixturing and gravitational loading) and the points contacted on
the artefact are nominally the same and involve the same form errors, any
variation between Xk and associated features ak are due to CMM measure-
ment effects and, importantly, are largely independent of form errors.

Let

X =


X1
...
Xk
...

XnK


and suppose the point cloud variance matrix VX associated with X is par-
titioned accordingly,

VX =


V11 V12 · · · V1nK

V >12 V22 · · · V2nK

...
. . .

...
V >1nK

V >2nK
· · · VnKnK

 .
Let GAk|Xk

be the n × 3m sensitivity matrix of ak with respect to Xk and
GA|X the block diagonal matrix with GAk|Xk

on the kth diagonal block.
Then the variance matrix VA|X associated with a1:nK is given by

VA|X = GA|XVXG
>
A|X .

For two positions k and `, the variance matrix VAk`
associated with ak` =

ak − a` is given by

VAk`
=
[
GAk|Xk

−GA`|X`

] [ Vkk Vk`
V >k` V``

] [
GAk|Xk

−GA`|X`

]>
.
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If the features a are independent of position, e.g., the radius of a cylinder,
then the observed difference ak` is such that

ak` ∈ N (0, VAk`
), (I.77)

from which a validity test can be constructed as above.

The approach can be applied to the case where the associated features are
the projected residual distances d̃k which are nominally independent of posi-
tion. The relationship in (I.77) can be used to assess the a prior uncertainty
estimate based on the pair-wise difference between projected residuals d̃k.
It is also possible to assess validity based on all the measurements simul-
taneously as follows. Let GD̃k|Xk

= Q>2,kGD̂k|Xk
be the sensitivity matrix

associated with the projected residuals d̃k = Q>2,kdk with respect to Xk and
GD̃|X the block diagonal matrix with GD̃k|Xk

on the kth diagonal block.

Then the variance matrix VD̃|X associated with d̃1:nK is given by

VD̃|X = GD̃|XVXG
>
D̃|X .

The form errors f associated with the artefact can be parametrized as Q2f̃
where Q2 is the orthogonal matrix associated with a fit to nominal data
with the artefact in a nominal position and the model implies that

d̃1:nK ∈ N (Cf̃ , VD̃|X). (I.78)

Here C is the nK(m − n) × (m − n) matrix constructed from Q>2,kQ2, k =

1, . . . , nK . If f̌ are the least squares estimates of f̃ calculated by solving

min
˜f

(d̃1:nK − Cf̃)>V −1
D̃|X(d̃1:nK − Cf̃),

then the model in (I.78) implies that

R2 = (d̃1:nK − Cf̌)>V −1
D̃|X(d̃1:nK − Cf̌)

is a sample from χ2
(nK−1)(m−n), enabling a validity test to be constructed.

Repeatability experiments

Repeatability experiments involve measuring the same artefact in the same
nominal position using nominally the same measurement strategy x1:m and
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evaluating the same associated features a. The experiments may involve
remounting the artefact in the same position so that effects associated with
fixturing can influence the results but other effects are nominally the same:
geometric effects, probing effects, form errors, etc. Let Xr, r = 1, . . . , nR, be
the data sets recorded in the repeatability experiments and ar the associated
features derived from Xr. The general model for CMM measurement in (I.5)
separates out the systematic effects ei from the random effects εi and the a
priori method separates out point cloud variance matrix in a similar way:

VX = VR + VE , VR = σ2
RI.

For repeatability experiments, we assume that the systematic effects are
constant for each set of measurements

xk,1:m = x∗k,1:m + e1:m + εk,1:m.

Let GA|X be the sensitivity of the associated features a with respect to x1:m

for the fixed measurement strategy. Then

ar = a∗ + eA + δr, eA = GA|Xe1:m,

with
δr ∈ N (0, VA|R), VA|R = σ2

RGA|XG
>
A|X .

Letting

ā =
1

nR

nR∑
r=1

ar,

then

R2 =

nR∑
r=1

(ar − ā)>V −1
A|R(ar − ā) ∈ χ2

(nR−1)n.

This relationship can be used to assess the validity of VA|R and since VA|R
depends only on σR, the repeatability experiments can be used directly to
assess the validity of σR (as one would expect).

I.9.3 Posterior adjustment of statistical parameters

See also [1], sections 4.1 and 4.1 and [16].

The a priori model of CMM behaviour allows the variance matrix VX to
constructed, given a measurement strategy. The type of validation experi-
ments described above involve using the fact that an observed sum of squares
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residuals R2 is modelled as a draw from a χ2
ν distribution with ν degrees

of freedom. The mean of the distribution χ2
ν is ν. If the a priori method

accurately modelled the CMM uncertainty behaviour and the validation
experiments were carried out a number of times, then we expect that the
average value of R2 would be centred around ν. This fact leads to a posterior
adjustment approach as follows.

Suppose a model predicts

R2
0 = (a− â)>V −1

0 (a− â) ∈ χ2
ν , (I.79)

but that there is some doubt about the variance matrix V0 in that it could
be out by an unknown scale factor σ2, i.e., the true variance matrix V is
given by V = σ2V0 where σ2 is unknown. Writing

R2 = R2(σ2) = (a− â)>V −1(a− â) =
R2

0

σ2

and equating R2 with the expected value of ν, we arrive at a posterior
estimate of

σ̂2 =
R2

0

ν
(I.80)

for σ2. Thus, multiplying the input uncertainties by σ̂ leads to a residual
sum of squares R2 that accords (optimally in some sense) with the model
predictions.

Repeatability experiments

If d̂r are residual error vectors associated with a set of repeated measure-
ments, then the projected residual errors d̃r = Q>2 d̂r are such that

d̃r = Q>2 f +Q>2 eD + ε̃r, ε̃r ∈ N (0, σ2
RI),

where f are the form errors associated with the artefact and eD are the
fixed systematic effects associated with x>i ni. If d̄ is the mean of the d̃r,
then a posterior estimate σ̂R of σR is given by

σ̂2
R =

1

nR(m− n)

nR∑
r=1

(d̃r − d̄)>(d̃r − d̄). (I.81)

I-119



EUCoM D2 Report A Priori (type B) evaluation Method B1

Posterior adjustment with prior information

The posterior estimate of σ in (I.80) assumes that nothing is known about
the scale factor σ2 prior to the validation exercise. A more flexible approach
is as follows, using a Bayesian hierarchical model [23, 35]. We suppose that
the model predicts that estimates â of parameters a are such that

â|φ ∈ N (a, φ−1V0), φ = σ−2, (I.82)

where φ is a scaling parameter defined in terms of σ2. We assume that a
prior estimate σ2

0 of σ2 is available. If V0 is our best estimate of the variance
matrix, then σ2

0 can be taken to be 1. Associated with the estimate σ2
0 is a

degree of belief parameter m0 > 0 that model the confidence we have in the
estimate σ2

0 with large m0 signifying more confidence. The parameter m0

can be thought of as the number of repeat measurements taken to provide
the estimate σ2

0. The prior information about σ2 is encoded as

φ ∼ G(m0/2,m0σ
2
0/2) (I.83)

where G(A,B) is a gamma distribution define in terms of shape parameter
A and rate parameter B or, equivalently,

m0σ
2
0φ ∼ χ2

m0
.

Table I.18 shows values of s = sα,m0 = 1/
√
φα,m0 for φα,m0 such that

Pr(φ ≤ φα,m0) ≤ α) for φ ∼ G(m0/2,m0/2). For example, if m0 = 10, the
table shows that there is 2.5 % prior probability that the true scaling factor
σ ≤ 0.7 or that σ ≥ 1.75. Assuming a non-informative prior p(a) ∝ 1, the
relationships (I.82) and (I.83) define the joint distribution

p(a, φ|â) = p(a|â, φ)p(φ)

from which the marginalised distribution p(a|â can be calculated to be

a|â ∼ tm0(â, σ2
0V0). (I.84)

If σ2
0 = 1, as will be the case in our application, the fact that the scale

parameter is not known exactly means that the instead of a Gaussian state of
knowledge distribution for a of the form a ∼ N (â, V0), we have instead a ∼
tm0(â, V0). As m0 −→ ∞, the t-distribution approaches the corresponding
Gaussian distribution. For modest values of m0, say less than 20, the t-
distribution accords significantly more probability mass away from the mean
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that the corresponding Gaussian distribution. For m0 > 2, the variance
matrix associated with tm0(â, V0) is m0/(m0 − 2) representing the increase
in variance due to the longer tails of the t-distribution.

Given observed sum of squares R2
0 as in (I.79), the posterior adjusted esti-

mate σ̄2 of σ2 is given by

σ̄2 =
m0σ

2
0 + νσ̂2

m0 + ν
=

(
m0

m0 + ν

)
σ2

0 +

(
ν

m0 + ν

)
σ̂2, (I.85)

a weighted average of the prior estimate σ2
0 and the estimate σ̂2 derived from

the validation experiment as in (I.80). The posterior distribution for a is
given by

a ∼ tm0+ν(â, V̄ ), V̄ = σ̄2V0.

The marginalised posterior distribution for φ is such that

φ|â ∼ G(m̄/2, m̄σ̄2/2), m̄ = m0 + ν.

If the prior information is weak in the sense that m0 is small, relative to ν,
then the posterior estimate σ̄2 is close to that determined from the validation
experiment, namely σ̂2 in (I.80). Conversely, if the validation involves only
a small number of measurements as represented by ν, relative to m0, then
the posterior estimate is close to the prior estimate σ2

0.

Posterior adjustment of a number of statistical parameters

The posterior adjustment scheme described above in section I.9.3 relates to
estimating a single scale adjustment parameters σ2. The a priori model
for CMM measurement involves a number of statistical parameters. The
one-parameter adjustment scheme can be applied to each of the statistical
parameters, so that

σ̄R = σ̄σR, σ̄ET = σ̄σET ,

etc. However, we may be more confident in the estimates of some of the
statistical parameters than others and applying a single scale adjustment
to all the parameters may not be appropriate. Here, we consider the case
where we want to apply separate adjustment schemes to the random effects
and systematic effects.

We assume a validation experiments gives rise to data y that can be modelled
(after linearisation if necessary) according to

y ∈ N (Ca, φ−1
R VR + φ−1

E VE),
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where C is a m × n observation matrix. Assuming a non-informative prior
p(a) ∝ 1 for a, it is possible to determine the posterior distribution p(φR, φE |y)
up to a normalising constant. Estimates φ̂R and φ̂E can then be determined
finding the values that maximise p(φR, φE |y). with prior information about
scale factors φR and φE given by

φR ∼ G(mR/2,mR/2), φE ∼ G(mE/2,mE/2),

(so that 1 is the prior expected value for both φR and φE).
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m0\α 0.025 0.050 0.100 0.900 0.095 0.975

1.00 0.45 0.51 0.61 7.96 15.95 31.91
2.00 0.52 0.58 0.66 3.08 4.42 6.28
3.00 0.57 0.62 0.69 2.27 2.92 3.73
4.00 0.60 0.65 0.72 1.94 2.37 2.87
5.00 0.62 0.67 0.74 1.76 2.09 2.45

6.00 0.64 0.69 0.75 1.65 1.92 2.20
7.00 0.66 0.71 0.76 1.57 1.80 2.04
8.00 0.68 0.72 0.77 1.51 1.71 1.92
9.00 0.69 0.73 0.78 1.47 1.65 1.83

10.00 0.70 0.74 0.79 1.43 1.59 1.75

15.00 0.74 0.77 0.82 1.32 1.44 1.55
20.00 0.77 0.80 0.84 1.27 1.36 1.44
25.00 0.78 0.81 0.85 1.23 1.31 1.38
30.00 0.80 0.83 0.86 1.21 1.27 1.34
35.00 0.81 0.84 0.87 1.19 1.25 1.30
40.00 0.82 0.85 0.88 1.17 1.23 1.28
45.00 0.83 0.85 0.88 1.16 1.21 1.26
50.00 0.84 0.86 0.89 1.15 1.20 1.24

60.00 0.85 0.87 0.90 1.14 1.18 1.22
70.00 0.86 0.88 0.90 1.12 1.16 1.20
80.00 0.87 0.89 0.91 1.12 1.15 1.18
90.00 0.87 0.89 0.91 1.11 1.14 1.17

100.00 0.88 0.90 0.92 1.10 1.13 1.16

200.00 0.91 0.92 0.94 1.07 1.09 1.11
500.00 0.94 0.95 0.96 1.04 1.06 1.07

Table I.18: Values of s = sα,m0 = 1/
√
φα,m0 for φα,m0 such that Pr(φ ≤

φα,m0) ≤ α) for φ ∼ G(m0/2,m0/2).
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I.10 Numerical results

I.10.1 Repositioning and repeatability experiments

As part of an a posteriori (Type A) estimation of CMM uncertainty, a
large number of experiments have been undertaken to measure a number of
artefacts by a number of CMMs. In each experiment, the same artefact is
measured in nK = 4 different positions, with nR = 5 repeat measurements
in each position, making a total of nKnR = 20 measurements of the artefact.
We denote by Xkr, k = 1, . . . , nK , r = 1, . . . , nR, the point cloud datasets
and by akr the features associated with data sets Xkr. The fact that the
measurements involve repeat measurements means that posterior estimates
σ̂R can be derived using the approach described in section I.9.2. Given σ̂R,
an estimate σ̂E associated with the combined systematic effects can also be
determined.

I.10.2 Hyperbolic paraboloid

The measurements of a hyperbolic paraboloid relate a surface [33] whose
nominal shape is given by z = xy/64 in units of millimetres. The data set
in the first position relates to the nominal surface

z − 27 = (x− 48)(y − 48)/64, (I.86)

with m = 52 gathered with xy-coordinates located as in figure I.19. The
second, third and fourth locations of the artefact are nominally determined
by rotating the artefact in position 1 through 90◦ about the x-, y- and z-axes.

The recorded data are distances dokr that are interpreted to be the orthogonal
distances of the data xi to the nominal surface at x∗i , i.e., doi = ‖xi − x∗i |.
Given x∗1:m lying on the nominal surface, associated normal vectors n1:m we
reconstruct the measured data according to xi = x∗i + doini, so that dokr can
be used to reconstruct the datasets Xkr, k = 1, . . . , nK = 4, r = 1, . . . , nR =
5.

A paraboloid is fitted to the datasets Xkr using a nonlinear least squares
orthogonal distance regression algorithm [6, 21] to determine vectors d̂kr of
residual orthogonal distances. The paraboloid is parametrized in terms of
three rotation angles α and six further parameters b such that

ẑ = [x̂2, ŷ2, x̂ŷ, x̂, ŷ, 1]b x̂ = R(α)x.
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For the hyperboloid in (I.86), nominally b> = [0, 0, 1/64,−3/4,−3/4, 63].

Associated with each position of artefact is matrix Q2,k and sensitivity ma-
trix GD̂|D = Q2,kQ

>
2,k. The projected residuals d̃kr = Q>2,kdkr are modelled

according to

d̃kr = Q>2,kQ2f̃ +Q>2,kek + ε̃kr, ε̃kr ∈ N (0, σ2
RI), (I.87)

where ek relate to the combined systematic effects applying in the kth po-
sition. If

d̄k =
1

nR

nR∑
r=1

d̃kr, k = 1, . . . , nK ,

then a posterior estimate of σR is given by

σ̂2
R =

1

nKnR(m− n)

nK∑
k=1

nR∑
r=1

(d̃kr − d̄k)>(d̃kr − d̄k), (I.88)

derived from all nknR sets of measurements. With this posterior estimate
of σR, we can also average (I.87) to yield

d̄k = Q>2,kQ2f̃ + ēk + ε̄k, ε̄kr ∈ N (0, (σ̂2
R/nR)I), ēk = Q>2,kek. (I.89)

If we make the simplifying assumption that ēk ∈ N (0, σ2
E,0), then, letting

f̄ =
1

nK

nK∑
k=1

d̄k,

a posterior estimate σ̂E,0 of σE,0 is given by

σ̂2
E,0 =

1

nK(m− n)

nK∑
k=1

(d̄k − f̄)>(d̄k − f̄)− σ̂2
R/nR. (I.90)

Given estimate σ̂R, equation (I.89) can be used to define the model

d̄1:nK ∈ N
(
Cf̃ , σ2

0(VD̄|E + σ̂RI)
)
, (I.91)

where VD̄|E is the variance matrix associated with the projected residuals
due to the systematic effects and σ0 is a single scale adjustment for the
variance matrix. A posterior estimate σ̂0 of σ0 can be determined following
the general approach described in section I.9.3.

We note that the estimates σ̂R and σ̂E,0 given in (I.88) and (I.90) are essen-
tially those arising from an analysis of variance approach involving a random
effect and a position effect, analogous to a repeatability and geometry effects
in the a posteriori approach [39, 40].
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Figure I.19: Nominal xy-coordinates, of 52 points on a hyperbolic paraboloid
given in (I.86). The points marked with a cross are those for which uncer-
tainties are reported in the tables.
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Analysis of the hyperbolic paraboloid data

The measurements using eight CMMs at different laboratories have been
analysed. The main steps carried out in the analysis are:

1. From the A + L/B statement, assign statistical parameters σ listed
in table I.11. The spatial correlation lengths were set to be λET =
λER = 10 mm, λP = 0.3.

2. Determine prior estimates of uncertainties associated with x>i ni for
measurements of the artefact in the first position.

3. Determine prior estimates of uncertainties associated with d̂, the fit-
ted residual distances, for measurements of the artefact in the first
position.

4. Reconstruct the datasets Xkr and calculate the residual error vectors
d̂kr by fitting a paraboloid to Xkr.

5. Determine of a posterior estimate σ̂R of σR based on all the repeata-
bility measurements (I.88).

6. From σ̂R, determine estimate σ̂E,0 of the standard deviation of the
combined systematic effects (I.90). This estimate is for information
only.

7. With σR adjusted to be the posterior estimate σ̂R, determine a poste-
rior estimate σ̂0 = σ̂0|σ of σ0, based on the model (I.91).

8. Use the posterior estimates to adjust all the statistical parameters
(including σR for a second time), e.g., σ̂ET = σ̂0σET , etc., accept
for those associated with probe qualification and scale effects. The
estimate of σR is now σ̂0σ̂R.

9. Verify that the posterior-adjusted σ̂ statistical parameters are con-
sistent with the measurement data by showing that the equivalent
σ̂0,0 = σ̂0|σ̂ is close to 1.

The uncertainty estimation assumes that four separate probes are used for
each of the four positions, each of offset length 20 mm aligned with the main
probing direction, i.e, aligned with the z-, y-, x- and z-axes.
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CMI XENOS data

The prior estimates of the statistical parameters are given in the first nu-
merical column of table I.19. Based on these estimates, the uncertainties
ui = u(x>i ni) associated with measurements at nominal points xi, along
with the contributions from various factors are given in table I.20. Table I.21
standard uncertainties u(d̂i) associated with fitted residual distances along
with uncertainty components relating to the various influence factors.

We note that while all the influence factors contribute to the uncertainties
associated with x>i ni, table I.20, the probe qualification effects (PQ) and
scale and squareness effects make no contribution to the uncertainties asso-
ciated with d̂. Since only one probe is used in the simulation, the effect is
the same as that of a fixed offset and does not contribute to the residual
distances. Similarly, scale and squareness effects can be compensated by
changing the position and shape of the fitted paraboloid.

The analysis of the repeatability data gives a posterior estimate σ̂R =
0.034 µm, about half the prior estimate of σR=0.06 µm. The approxi-
mate estimate of the standard deviation σE,0 associated with the systematic
effects is σ̂E,0 = 0.077 µm. The posterior estimate of σ0 is σ̂0 = 0.45, indi-
cating that the prior estimates of the statistical parameters are pessimistic
by a factor of about one half. The values of σ̂R and σ̂0 are used to produce
posterior estimates σ̂ of the statistical parameters and these have been used
to provide estimates of the uncertainties u(d̂i|σ̂) associated with the residual
distances d̂. These are given in table I.22. The prior estimates σ have been
tuned to produce posterior estimates σ̂ that are optimally consistent with
the data.

Validation of the prior estimates

The value of σ̂0 can be thought of as a single measure of the validity of the
prior estimates of the point cloud uncertainties and associated features. A
value of σ̂0 = 1 indicates optimal consistency of the prior model with the
observed data. The values of σ0 in the bottom row table I.19 range from
0.4 (laboratory 3) to 2.2 (laboratory 7). The results associated laboratory
7 have some anomalous aspects with some outlying data observed so that
the value of σ̂0 for this laboratory is suspect. The next highest value of σ̂0

is 1.1, laboratory 5.
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1 2 3 4 5 6 7 8

A 0.300 0.400 0.700 0.800 0.800 1.200 1.300 2.700

B 1.000 0.900 0.600 0.400 0.400 0.770 0.300 0.300

σR 0.060 0.080 0.140 0.160 0.160 0.240 0.260 0.540

σS 0.354 0.393 0.589 0.884 0.884 0.459 1.179 1.179

σS,a 0.354 0.393 0.589 0.884 0.884 0.459 1.179 1.179

σQ 0.354 0.393 0.589 0.884 0.884 0.459 1.179 1.179

σET 0.100 0.133 0.233 0.267 0.267 0.400 0.433 0.900

σER 1.000 1.111 1.667 2.500 2.500 1.299 3.333 3.333

σPQ 0.060 0.080 0.140 0.160 0.160 0.240 0.260 0.540

σP0 0.042 0.057 0.099 0.113 0.113 0.170 0.184 0.382

σP 0.060 0.080 0.140 0.160 0.160 0.240 0.260 0.540

σ̂R 0.036 0.069 0.120 0.111 0.042 0.182 0.093 0.214

σ̂E,0 0.034 0.077 0.052 0.205 0.109 0.164 0.574 0.423

σ̂0 0.464 0.703 0.405 1.141 0.440 0.646 2.241 0.730

Table I.19: Hyperboloid. Prior estimates the statistical parameters based
on MPE statements and values of statistical parameters based on the mea-
surement data. The units for σR, σET , σPQ, σP0 , σP , σ̂R and σ̂E,0 are µm,
those for σS , σS,a, σQ and σER are µm/m and the unit for σ0 is 1. The
CMMs involved are 1 – CMI XENOS, 2 – Tekniker, 3 – PTB UPMC, 4 –
PTB PMM, 5 – CUT PMM, 6 – CMI SIP, 7 – GUM, 8 – UNIPD (probing).
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The following comments can be made:

1. The range of the values of σ0 indicates approximate consistency of the
prior model with observed data, with the majority indicating the prior
model overestimates the uncertainty to some extent. The prior model
is based on just two numbers, A and B, associated with the MPE
statement. The statistical model we have used is based on scaling the
A and B values by a factor of K = 2 as in (I.3). Since the MPE
statement relates to the maximum permissible error, a larger value of
K, say K = 3, may be more appropriate.

2. While the values of σ0 indicate a possible overestimation of the uncer-
tainties, the paraboloid experiments do not involve difficult probing
strategies and multiple probe qualification effects so that other ex-
periments could produce data that display more variation due to more
effects have influence. As a consequence, the posterior estimates of the
parameters characterising probe qualification and scale and squareness
effects are set to be the same as their prior estimates as no new infor-
mation about them is available.

3. Two of the laboratories, 4 and 5, have the same MPE statement, the
values of σ̂0 are significantly different. Being based on the MPE state-
ment alone, the prior estimates of the statistical parameters do not
take into account different environmental conditions, or other influence
factors such as fixturing, for example. However, if prior information
is available on environment, then the statistical parameters could be
adjusted appropriately.

4. The posterior estimates are based on the observed values of σ̂R and
σ̂0. Some averaging of the prior and observed values as in (I.85) might
be more appropriate. Based on the values in table I.18, the prior
estimates have a degree of belief value of m0 ≈ 10.
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xi yi zi ui R PQ S ET ER P E

53.500 8.500 23.605 0.154 0.060 0.060 0.029 0.100 0.011 0.073 0.141

44.500 8.500 29.160 0.154 0.060 0.060 0.030 0.100 0.011 0.073 0.141

35.500 8.500 34.715 0.154 0.060 0.060 0.031 0.100 0.011 0.073 0.142

26.500 8.500 40.270 0.154 0.060 0.060 0.032 0.100 0.011 0.073 0.142

17.500 17.500 41.535 0.154 0.060 0.060 0.032 0.100 0.011 0.073 0.142

26.500 17.500 37.246 0.154 0.060 0.060 0.031 0.100 0.010 0.073 0.142

35.500 17.500 32.957 0.154 0.060 0.060 0.030 0.100 0.009 0.073 0.141

44.500 17.500 28.668 0.153 0.060 0.060 0.029 0.100 0.009 0.073 0.141

53.500 17.500 24.379 0.153 0.060 0.060 0.028 0.100 0.009 0.073 0.141

62.500 17.500 20.090 0.153 0.060 0.060 0.027 0.100 0.009 0.073 0.141

71.500 26.500 19.105 0.152 0.060 0.060 0.023 0.100 0.009 0.073 0.140

62.500 26.500 22.129 0.153 0.060 0.060 0.025 0.100 0.008 0.073 0.140

53.500 26.500 25.152 0.153 0.060 0.060 0.027 0.100 0.007 0.073 0.141

26.500 26.500 34.223 0.154 0.060 0.060 0.030 0.100 0.009 0.073 0.141

17.500 26.500 37.246 0.154 0.060 0.060 0.031 0.100 0.010 0.073 0.142

8.500 26.500 40.270 0.154 0.060 0.060 0.032 0.100 0.011 0.073 0.142

8.500 35.500 34.715 0.154 0.060 0.060 0.031 0.100 0.011 0.073 0.142

17.500 35.500 32.957 0.154 0.060 0.060 0.030 0.100 0.009 0.073 0.141

62.500 35.500 24.168 0.152 0.060 0.060 0.023 0.100 0.006 0.073 0.140

71.500 35.500 22.410 0.152 0.060 0.060 0.022 0.100 0.008 0.073 0.140

71.500 44.500 25.715 0.152 0.060 0.060 0.020 0.100 0.007 0.073 0.140

62.500 44.500 26.207 0.152 0.060 0.060 0.022 0.100 0.005 0.073 0.140

17.500 44.500 28.668 0.153 0.060 0.060 0.029 0.100 0.009 0.073 0.141

8.500 44.500 29.160 0.154 0.060 0.060 0.030 0.100 0.011 0.073 0.141

8.500 53.500 23.605 0.154 0.060 0.060 0.029 0.100 0.011 0.073 0.141

17.500 53.500 24.379 0.153 0.060 0.060 0.028 0.100 0.009 0.073 0.141

26.500 53.500 25.152 0.153 0.060 0.060 0.027 0.100 0.007 0.073 0.141

53.500 53.500 27.473 0.152 0.060 0.060 0.022 0.100 0.002 0.073 0.140

62.500 53.500 28.246 0.152 0.060 0.060 0.021 0.100 0.005 0.073 0.139

71.500 53.500 29.020 0.152 0.060 0.060 0.020 0.100 0.007 0.073 0.139

62.500 62.500 30.285 0.152 0.060 0.060 0.021 0.100 0.006 0.073 0.140

53.500 62.500 28.246 0.152 0.060 0.060 0.021 0.100 0.005 0.073 0.140

44.500 62.500 26.207 0.152 0.060 0.060 0.022 0.100 0.005 0.073 0.140

35.500 62.500 24.168 0.152 0.060 0.060 0.024 0.100 0.006 0.073 0.140

26.500 62.500 22.129 0.153 0.060 0.060 0.025 0.100 0.008 0.073 0.140

17.500 62.500 20.090 0.153 0.060 0.060 0.027 0.100 0.009 0.073 0.141

26.500 71.500 19.105 0.153 0.060 0.060 0.025 0.100 0.009 0.073 0.140

35.500 71.500 22.410 0.152 0.060 0.060 0.023 0.100 0.008 0.073 0.140

44.500 71.500 25.715 0.152 0.060 0.060 0.022 0.100 0.007 0.073 0.140

53.500 71.500 29.020 0.152 0.060 0.060 0.022 0.100 0.007 0.073 0.140

Table I.20: CMI XENOS data. Selected nominal point coordinates xi in
mm and standard uncertainties ui = u(x>i ni) in µm along with uncertainty
components relating to the various influence factors, based on prior estimates
σ of the statistical parameters. The final column is the estimate uncertainty
contribution from all the systematic effects with u2

i = u2
R,i + u2

E,i.
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xi yi zi u(d̂i) R PQ S ET ER P E

53.500 8.500 23.605 0.097 0.050 0.000 0.000 0.078 0.008 0.028 0.084

44.500 8.500 29.160 0.098 0.054 0.000 0.000 0.079 0.008 0.023 0.082

35.500 8.500 34.715 0.098 0.054 0.000 0.000 0.079 0.008 0.023 0.082

26.500 8.500 40.270 0.098 0.050 0.000 0.000 0.079 0.008 0.027 0.084

17.500 17.500 41.535 0.096 0.052 0.000 0.000 0.078 0.009 0.019 0.081

26.500 17.500 37.246 0.098 0.057 0.000 0.000 0.077 0.008 0.019 0.080

35.500 17.500 32.957 0.102 0.057 0.000 0.000 0.081 0.007 0.021 0.084

44.500 17.500 28.668 0.101 0.057 0.000 0.000 0.081 0.007 0.021 0.084

53.500 17.500 24.379 0.097 0.057 0.000 0.000 0.077 0.007 0.020 0.079

62.500 17.500 20.090 0.096 0.052 0.000 0.000 0.077 0.007 0.021 0.080

71.500 26.500 19.105 0.096 0.049 0.000 0.000 0.077 0.007 0.029 0.082

62.500 26.500 22.129 0.097 0.057 0.000 0.000 0.076 0.006 0.021 0.079

53.500 26.500 25.152 0.109 0.058 0.000 0.000 0.087 0.006 0.030 0.092

26.500 26.500 34.223 0.109 0.058 0.000 0.000 0.088 0.007 0.029 0.093

17.500 26.500 37.246 0.098 0.057 0.000 0.000 0.077 0.008 0.019 0.080

8.500 26.500 40.270 0.098 0.050 0.000 0.000 0.079 0.008 0.027 0.084

8.500 35.500 34.715 0.098 0.054 0.000 0.000 0.079 0.008 0.023 0.082

17.500 35.500 32.957 0.102 0.057 0.000 0.000 0.081 0.007 0.021 0.084

62.500 35.500 24.168 0.101 0.057 0.000 0.000 0.080 0.005 0.024 0.083

71.500 35.500 22.410 0.096 0.053 0.000 0.000 0.075 0.006 0.024 0.079

71.500 44.500 25.715 0.096 0.053 0.000 0.000 0.075 0.005 0.025 0.079

62.500 44.500 26.207 0.100 0.057 0.000 0.000 0.079 0.004 0.024 0.083

17.500 44.500 28.668 0.101 0.057 0.000 0.000 0.081 0.007 0.021 0.084

8.500 44.500 29.160 0.098 0.054 0.000 0.000 0.079 0.008 0.023 0.082

8.500 53.500 23.605 0.097 0.050 0.000 0.000 0.078 0.008 0.028 0.084

17.500 53.500 24.379 0.097 0.057 0.000 0.000 0.077 0.007 0.020 0.079

26.500 53.500 25.152 0.109 0.058 0.000 0.000 0.087 0.006 0.030 0.092

53.500 53.500 27.473 0.109 0.058 0.000 0.000 0.086 0.003 0.032 0.092

62.500 53.500 28.246 0.097 0.056 0.000 0.000 0.075 0.004 0.022 0.078

71.500 53.500 29.020 0.095 0.049 0.000 0.000 0.076 0.005 0.030 0.082

62.500 62.500 30.285 0.095 0.052 0.000 0.000 0.076 0.005 0.023 0.079

53.500 62.500 28.246 0.097 0.056 0.000 0.000 0.075 0.004 0.022 0.078

44.500 62.500 26.207 0.100 0.057 0.000 0.000 0.079 0.004 0.024 0.083

35.500 62.500 24.168 0.101 0.057 0.000 0.000 0.080 0.005 0.024 0.083

26.500 62.500 22.129 0.097 0.057 0.000 0.000 0.076 0.006 0.021 0.079

17.500 62.500 20.090 0.096 0.052 0.000 0.000 0.077 0.007 0.021 0.080

26.500 71.500 19.105 0.096 0.049 0.000 0.000 0.077 0.007 0.029 0.082

35.500 71.500 22.410 0.096 0.053 0.000 0.000 0.075 0.006 0.024 0.079

44.500 71.500 25.715 0.096 0.053 0.000 0.000 0.075 0.005 0.025 0.079

53.500 71.500 29.020 0.095 0.049 0.000 0.000 0.076 0.005 0.030 0.082

Table I.21: CMI XENOS data. Selected nominal point coordinates xi in mm
and standard uncertainties u(d̂i) associated with fitted residual distances in
µm, along with uncertainty components relating to the various influence
factors, based on prior estimates σ of the statistical parameters. The fi-
nal column is the estimate uncertainty contribution from all the systematic
effects with u2

i = u2
R,i + u2

E,i.
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xi yi zi u(d̂i) R PQ S ET ER P E

53.500 8.500 23.605 0.041 0.014 0.000 0.000 0.036 0.004 0.013 0.039

44.500 8.500 29.160 0.041 0.015 0.000 0.000 0.037 0.004 0.011 0.038

35.500 8.500 34.715 0.041 0.015 0.000 0.000 0.037 0.004 0.011 0.038

26.500 8.500 40.270 0.041 0.014 0.000 0.000 0.037 0.004 0.013 0.039

17.500 17.500 41.535 0.040 0.015 0.000 0.000 0.036 0.004 0.009 0.038

26.500 17.500 37.246 0.040 0.016 0.000 0.000 0.036 0.004 0.009 0.037

35.500 17.500 32.957 0.042 0.016 0.000 0.000 0.038 0.003 0.010 0.039

44.500 17.500 28.668 0.042 0.016 0.000 0.000 0.037 0.003 0.010 0.039

53.500 17.500 24.379 0.040 0.016 0.000 0.000 0.036 0.003 0.009 0.037

62.500 17.500 20.090 0.040 0.015 0.000 0.000 0.036 0.003 0.010 0.037

71.500 26.500 19.105 0.041 0.014 0.000 0.000 0.036 0.003 0.013 0.038

62.500 26.500 22.129 0.040 0.016 0.000 0.000 0.035 0.003 0.010 0.037

53.500 26.500 25.152 0.046 0.016 0.000 0.000 0.040 0.003 0.014 0.043

26.500 26.500 34.223 0.046 0.016 0.000 0.000 0.041 0.003 0.013 0.043

17.500 26.500 37.246 0.040 0.016 0.000 0.000 0.036 0.004 0.009 0.037

8.500 26.500 40.270 0.041 0.014 0.000 0.000 0.037 0.004 0.013 0.039

8.500 35.500 34.715 0.041 0.015 0.000 0.000 0.037 0.004 0.011 0.038

17.500 35.500 32.957 0.042 0.016 0.000 0.000 0.038 0.003 0.010 0.039

62.500 35.500 24.168 0.042 0.016 0.000 0.000 0.037 0.002 0.011 0.039

71.500 35.500 22.410 0.040 0.015 0.000 0.000 0.035 0.003 0.011 0.037

71.500 44.500 25.715 0.040 0.015 0.000 0.000 0.035 0.002 0.011 0.037

62.500 44.500 26.207 0.042 0.016 0.000 0.000 0.037 0.002 0.011 0.038

17.500 44.500 28.668 0.042 0.016 0.000 0.000 0.037 0.003 0.010 0.039

8.500 44.500 29.160 0.041 0.015 0.000 0.000 0.037 0.004 0.011 0.038

8.500 53.500 23.605 0.041 0.014 0.000 0.000 0.036 0.004 0.013 0.039

17.500 53.500 24.379 0.040 0.016 0.000 0.000 0.036 0.003 0.009 0.037

26.500 53.500 25.152 0.046 0.016 0.000 0.000 0.040 0.003 0.014 0.043

53.500 53.500 27.473 0.046 0.016 0.000 0.000 0.040 0.001 0.015 0.043

62.500 53.500 28.246 0.040 0.016 0.000 0.000 0.035 0.002 0.010 0.036

71.500 53.500 29.020 0.040 0.014 0.000 0.000 0.035 0.002 0.014 0.038

62.500 62.500 30.285 0.040 0.014 0.000 0.000 0.035 0.002 0.010 0.037

53.500 62.500 28.246 0.040 0.016 0.000 0.000 0.035 0.002 0.010 0.036

44.500 62.500 26.207 0.042 0.016 0.000 0.000 0.037 0.002 0.011 0.038

35.500 62.500 24.168 0.042 0.016 0.000 0.000 0.037 0.002 0.011 0.039

26.500 62.500 22.129 0.040 0.016 0.000 0.000 0.035 0.003 0.010 0.037

17.500 62.500 20.090 0.040 0.015 0.000 0.000 0.036 0.003 0.010 0.037

26.500 71.500 19.105 0.041 0.014 0.000 0.000 0.036 0.003 0.013 0.038

35.500 71.500 22.410 0.040 0.015 0.000 0.000 0.035 0.003 0.011 0.037

44.500 71.500 25.715 0.040 0.015 0.000 0.000 0.035 0.002 0.011 0.037

53.500 71.500 29.020 0.040 0.014 0.000 0.000 0.035 0.002 0.014 0.038

Table I.22: CMI XENOS data. Selected nominal point coordinates xi in mm
and standard uncertainties u(d̂i) associated with fitted residual distances in
µm, along with uncertainty components relating to the various influence
factors, based on posterior estimates σ̂ of the statistical parameters. The
final column is the estimate uncertainty contribution from all the systematic
effects with u2

i = u2
R,i + u2

E,i.
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I.10.3 Connecting rod

The analysis of the connecting rod data follows a similar approach as that
for the hyperboloid, but is much simpler in that it applies features a rather
that residual distances. Here we report on measurement results associated
with the distance d12 between the two cylinder axes; see section I.8.3.

The analysis involves 5 repeated estimates of d12 in four positions. Ta-
ble I.23 shows the prior estimates of the statistical parameters based on
MPE statements, along with values of parameters based on the measure-
ment data. The spatial correlation lengths were λET = λER = 30 mm, and
λP = 0.3. Also shown in the table the estimate of u(d12|σ) based on the
prior estimates of the statistical parameters and that u(d12|σ̂) based on the
adjusted estimates. The adjusted statistical parameters are on the basis of
measurements of a single parameter in only four positions so that the num-
ber of degrees of freedom associated with the estimate of σ̂0 is three. If the
prior models reflected the actual behaviour, we would expect σ̂0 to lie in
the interval [0.27,1.77] with 95 % probability. The results associated with
laboratory 7 seem anomalous as the standard deviation for all 20 estimates
of d12 is 60 nm. The values of σ̂0 indicate that the uncertainties based on the
prior estimates of the statistical parameters σ are plausible and reasonably
consistent with the measurement data, given that only a limited amount of
information is available for validation.

The estimates of d12 in the four positions are not statistically independent.
For example, their correlation for the statistical characterisation of labora-
tory 8 in table I.23 is given by

C(d12) =


1.00 0.15 0.60 0.15
0.15 1.00 0.15 0.15
0.60 0.15 1.00 0.15
0.15 0.15 0.15 1.00

 .
The correlation is strongest between position 1 and 3, the latter correspond-
ing to rotation about the y-axis, i.e., about the long axis of the connecting
rod. Relatively speaking, position 3 is approximately in the same region of
the CMM as position 1 and the main scale effects are the same.

I.11 Conclusions
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1 2 3 4 5 6 7 8

A 0.300 0.400 0.500 0.700 0.700 0.800 0.900 1.200

B 1.000 0.900 0.500 0.600 0.400 0.400 0.400 0.770

σR 0.060 0.080 0.100 0.140 0.140 0.160 0.180 0.240

σS 0.354 0.393 0.707 0.589 0.884 0.884 0.884 0.459

σS,a 0.354 0.393 0.707 0.589 0.884 0.884 0.884 0.459

σQ 0.354 0.393 0.707 0.589 0.884 0.884 0.884 0.459

σET 0.100 0.133 0.167 0.233 0.233 0.267 0.300 0.400

σER 1.000 1.111 2.000 1.667 2.500 2.500 2.500 1.299

σPQ 0.060 0.080 0.100 0.140 0.140 0.160 0.180 0.240

σP0 0.042 0.057 0.071 0.099 0.099 0.113 0.127 0.170

σP 0.060 0.080 0.100 0.140 0.140 0.160 0.180 0.240

σ̂R 0.082 0.095 0.027 0.220 0.163 0.035 0.057 0.186

σ̂E,0 0.038 0.261 0.548 0.208 0.388 0.330 0.037 0.498

u(d12|σ) 0.134 0.170 0.237 0.289 0.319 0.351 0.383 0.458

u(d12|σ̂) 0.047 0.247 0.584 0.209 0.573 0.508 0.036 0.497

σ̂0 0.356 1.465 2.473 0.729 1.805 1.458 0.095 1.094

Table I.23: Connecting rod. Prior estimates of the statistical parameters
based on MPE statements, along with values of parameters based on the
measurement data. Also shown is the estimate of u(d12|σ) based on the
prior estimates of the statistical parameters and that u(d12|σ̂) based on the
adjusted estimates. The units for σR, σET , σPQ, σP0 , σP , σ̂R, σ̂E,0, u(d12|σ)
and u(d12|σ̂) are µm, those for σS , σS,a, σQ and σER are µm/m and the
unit for σ0 is 1. The CMMs involved are 1 – CMI XENOS, 2 – Tekniker, 3
– MG, 4 – ATH, 5 – Tubitak, 6 – PTB PMM, 7 – Metrosert, 8 – CMI SIP
(probing).
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.1 Point cloud variance decomposition in terms of
position, size and shape

See also [19, 18]. Suppose V (= VX) is a 3m×3m variance matrix associated
with a set of coordinates x1:m let J the 3m× 7 matrix constructed from Ji
where

Ji =

 1 0 0 0 −zi yi xi
0 1 0 zi 0 −xi yi
0 0 1 −yi xi 0 zi

 . (92)

Suppose J has QR factorisation J = QR where Q is a 3m× 3m orthogonal
matrix with Q>Q = QQ> = I and R is a 3m × 7 upper-triangular matrix
[25]. Partition Q as Q = [Q1 Q2 Q3] where Q1 is the submatrix comprised
of columns 1 to 6, Q2 corresponds to column 7 and Q3 comprises columns
8 to 3m. Finally, let

VP = P1V P
>
1 , VZ = P>2 V P

>
2 , VS = P3V P

>
3 , (93)

where Pk = QkQ
>
k . Variance matrices VP , VZ and VS represent the variance

components with respect to Position, siZe (or scale) and Shape, respectively.
Similarly, it is possible to isolate the variance components VPZ and VZS
associated with position and size, and size and shape [19], respectively, with

VPZ = P12V P
>
12, VZS = P23V P

>
23 = (I −Q1Q

>
1 )V (I −Q1Q

>
1 )>, (94)

where

P12 = [Q1 Q2][Q1 Q2]>, P23 = [Q2 Q3][Q2 Q3]>.

The matrices Pk are projections with Pk = P>k , PkPk = Pk, k = 1, 2, 3.
Since Q is an orthogonal matrix

I = QQ> = [Q1 Q2 Q3][Q1 Q2 Q3]> = Q1Q
>
1 +Q2Q

>
2 +Q3Q

>
3 = P1+P2+P3.

(95)
We can therefore write x = (P1 + P2 + P3)x = Q1p + Q2λ + Q3s, where
p = Q>1 x, λ = Q>2 x and s = Q>3 x represent an alternative parametrization
of x in terms of six position parameters p, one size parameter λ, and 3m−7
shape parameters s.

A similar decomposition can be undertaken for point clouds in 2 dimensions.
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.1.1 Traces of the variance matrices

Using (95), we can write

V = (P1 + P2 + P3)V (P1 + P2 + P3)> = VP + VZ + VS +
∑
k 6=j

PkV P
>
j .

This means that in general V 6= VP + VZ + VS . However, we recall that for
matrices for which AB and BA can be formed, trace(AB) = trace(BA), [25],
so that if k 6= j then trace(PkV P

>
j ) = trace(PkP

>
j V ) = 0, since PkP

>
j = 0.

Regarding the trace of a variance matrix as an aggregate measure of the
total variance, we have

trace(V ) = trace(VP ) + trace(VZ) + trace(VS) = trace(VP ) + Tr(VZS),

so that in terms of this aggregate measure, no information is lost in the
decomposition.

.1.2 Consistency of the decomposition

The projections Pk are determined by x and, applying the process twice, we
have PkPjV P

>
j P

>
k = PkV P

>
k , if k = j, and is zero otherwise. Thus, VP has

no component of variance relating to size or shape, VZ has no component of
variance relating to position or shape, etc.

.1.3 Decomposition for specific classes of variance matrix V

If V = σ2I, then trace(VP ) = 6σ2, trace(VZ) = σ2 and trace(VS) = (3m −
7)σ2. For large m, the variance is dominated by the uncertainty in shape;
random, uncorrelated perturbations will have only a small position and size
component.

Suppose x̂i = R(α)(xi−x0) is a rigid body transformation of xi depending
on three rotation angles α and three translation parameters x0. Assuming

t =

[
x0

α

]
is associated with variance matrix Vt, let G be the 3m×6 matrix

of partial derivatives of x̂ with respect to t and set V = GVtG
>. Then

V is the variance matrix associated with the 3m × 1 vector x̂ derived by
propagating the variance associated with t through to x̂. Then the variance
decomposition for V has VP = V and VZ = VS = 0.
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Now suppose V = σ2
Zxx

> so that V represents a variance matrix consisting
solely in the uncertainty contribution from a scale parameter λ. In general
the variance decomposition of V will have a non-zero position component
VP as well as a non-zero size component VZ ; the shape component VS will
be zero. However, for mean centred data with

∑
xi =

∑
yi =

∑
zi = 0,

then VZ = V and VP = VS = 0.

.1.4 Uncertainties associated with distances

If dij is the distance between xi and xj and gij the 3m-vector of partial
derivatives of dij with respect to x, then

u2(dij) = g>ijV gij = g>ijVZSgij , g>ijVPgij = 0;

uncertainty in position does not contribute to uncertainty in distance.

.1.5 Uncertainties associated with angles

If αijk is the angle between xi − xj and xi − xk and gijk the 3m-vector of
partial derivatives of αijk with respect to x, then

u2(αijk) = g>ijkV gijk = g>ijkVSgijk, g>ijkVPgijk = g>ijkVZgijk = g>ijkVPZgijk = 0;

uncertainty in angle depends only on the uncertainty in shape.

.2 Temporal correlation associated with system-
atic effects

The models so far have considered systematic effects ei and random effects
εi. The distinction is important in the characterisation of repeated mea-
surements: the systematic effects are considered constant while the random
effects are re-sampled for each repeat measurement. One way to think of
this is that the systematic effects are highly correlated over time while the
random effects are completely independent with respect to time. In practice,
it is more reasonable to regard the systematic effects as changing over time
but do so over much longer timescales than the random effects. A GP model
can be used to model this in which each systematic effect e is associated with
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spatio-temporal coordinates (x, t) and the correlation between effects e and
e′ depends both on the spatial and temporal separation:

cov(e, e′) = k(x,x′)k(t, t′)

= σ2
E exp{−‖x− x′‖2/λ2

X} exp{−(t− t′)2/λ2
T }. (96)

The temporal correlation can important in uncertainty evaluation in com-
parator mode [20, 29] in which the CMM is used to measure of a calibrated
master artefact and a test artefact nominally of the same geometry using the
same measurement strategy. The test artefact can be calibrated under the
assumption that the systematic effects are constant so that any difference
in the the measurement results for the two artefacts is due to a difference in
geometry and random effects. The temporal correlation model can be used
to account for the fact that the systematic effects may have drifted in time
resulting in a quantifiable increase in the uncertainties associated with the
calibration of the test artefact due to instrument drift.

.2.1 Spatio-temporal correlation for scale and squareness ef-
fects

In section I.3.5, we considered a simple model for scale and squareness effects
depending on seven parameters b. The model is particularly appropriate for
modelling the measurement of a workpiece at one location in the CMMm
measuring volume. Suppose the same workpiece is measured at a number of
positions in the CMM. Is it plausible that exactly the same squareness and
scale errors apply in each position? Similarly, suppose the same (or similar)
workpiece is measured at a (much) later time. Can we be sure that the
behaviour of the CMM has not drifted in the intervening period? We can
use spatio-temporal correlation concepts to extend the model as follows.

Suppose there are nK sets of measurements Xk, k = 1, . . . , nK , each associ-
ated with a 7-vector bk of scale and squareness errors. The sets of measure-
ments may involve different times or different positions or both. We assume
that the variance matrix associated with each bk is the same, denoted by
VB0 . We control the degree of correlation between the parameters b1:nK

through an nK × nK correlation matrix VT with 0 ≤ VT (k, `) = tk` ≤ 1 and
tkk = 1. For example, the correlation matrix could be constructed using
spatio-temporal correlation kernel similar to that in (96). The 7nK × 7nK
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variance matrix VB associated with all the effects b1:nK is constructed as12

VB =


t11VB0 t12VB0 · · · t1nKVB0

t21VB0 t22VB0 · · · t2nKVB0

...
. . .

...
tnK1VB0 tnK2VB0 · · · tnKnKVB0

 .

Let GXk|Bk
be the sensitivity matrix of Xk with respect to bk and GX|B

the block diagonal matrix with GXk|Bk
on the kth diagonal block. Then the

variance matrix VX|B associated with point coordinates X1:nK due to the
effects b1:nK is given by

VX|B = GX|BVBG
>
X|B.

The matrix VX|B is constructed from n2
K blocks

tk`GXk|Bk
VB0G

>
X`|B`

.

Similarly, let GAk|Bk
be the sensitivity matrix of parameters ak, derived

from data set Xk, with respect to bk and GA|B the block diagonal matrix
with GAk|Bk

on the kth diagonal block. Then the variance matrix VA|B
associated with a1:nK due to the effects b1:nK is given by

VA|B = GA|BVBG
>
A|B.

The matrix VA|B is constructed from n2
K blocks

tk`GAk|Bk
VB0G

>
A`|B`

.

.3 Indefinite integrals

The following integral are relevant to estimating sensitivity matrices asso-
ciated with fitting circles, spheres, cylinders and cones to data according to

12Thus VB is the tensor product, VB0 ⊗ VT , of VB0 with VT .
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the least-squares criterion, section I.5.2:∫
sin θdθ = − cos θ + C,∫
cos θdθ = sin θ + C,∫

sin2 θdθ =
1

2
θ − 1

4
sin 2θ + C,∫

cos2 θdθ =
1

2
θ +

1

4
sin 2θ + C,∫

sin θ cos θdθ = −1

4
cos 2θ + C,∫

cos3 θdθ = sin θ − 1

3
sin3 θ + C,∫

sin3 θdθ =
1

3
cos3 θ − cos θ + C,∫

sin2 θ cos θ =
1

3
sin3 θ + C,∫

sin θ cos2 θ = −1

3
cos3 θ + C.
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II-1 Introduction 
In coordinate metrology, the elementary components of any measured geometry are features 
such as planes and cylinders. These features may be combined to form more complex 
measurands. For instance, a geometry consists of a pin nominally normal to a flat, and the 
measurand is how far the top of the pin is from the flat. This involves three features: the flat, 
and the lateral surface and the top of the pin. The points measured on these features are 
associated by best-fitting [1] (3.4.1.4) to as many ideal features, resulting in two planes (the 
flat and the pin top) and a cylinder. The measurand is, e.g., the distance to the bottom plane 
of the intersection of the cylinder axis with the top plane1. 
One of the difficulties in evaluating the uncertainty of such measurements is that there is no 
closed form for the association of ideal features to measured points by best-fitting. This 
prevents from starting GUM main-stream of operations, the first of which is defining a 
measurement model. 
To overcome this problem, the approach of the method B2 is based on reducing the number 
of points to the essence of the geometry and the measurand. These essential points are not 
necessarily taken from those measured (or that will be measured), they are rather fabricated 
points representative of the geometry and of the evaluation of the measurand. In the above 
example of the pin and the flat, the representative points are three on the flat and one on the 
pin top. The measurand is then the distance of the latter to the plane through the former. The 
number of essential points is minimum, no approximation occurs, and the measurand can be 
expressed in closed form as a function of the essential points. This effectively constitutes the 
measurement model and enables to evaluate the uncertainty conventionally according to the 
GUM, by derivation of the sensitivity coefficients. The essential points may lay on integral 
features (surfaces; the three on the flat in the example) or on derived features (the one on the 
pin top, which lays of the cylinder axis). The exact location of the essential points is not 
immediately related to the sampling strategy. They are taken where significant for the geometry 
and in a reasonable and well-behaved fashion compatible with the nominal sizes and possible 
impediments. In the example, the three essential points on the flat will be 120° apart to each 
other (symmetrically disposed) at as long a distance to the pin axis as compatible with the pin 
and flat sizes. If any impediment prevents from this disposition, then the essential points are 
taken differently; for instance, not at 120° if an obstacle is there on one side, or not all at the 
same distance to the pin axis is the flat exhibits a high shape factor. 
The loose relationship to the actual or planned probing strategy constitutes the main 
approximation underpinning method B2. The effect of the point redundancy, or of the exact 
location of individual points is not captured and then overlooked. The method overlooks also 
that essential points taken on derived features stem from a number of elementary points, as 
opposed to those taken on integral features. The challenge of this method is that few 
well-selected essential points dominate the geometry and are in fact enough for an 
approximated but relatively easy evaluation of the uncertainty. 
In any measurement, there is no such measurand as the absolute position or orientation: any 
position or orientation is relative other features forming a datum (system). Ultimately, the 
fundamental pieces of information derived by measurements are distances between pairs of 
features. The measurand in the above example is explicitly a distance, but it could have been 
expressed as the position of the pin top when the flat is taken as datum. Distances can be 
decomposed to differences of coordinates of individual points. At the end, the measurand can 
be expressed as a function of the coordinate differences of the essential points. 
The capability of a CMM to measure distances accurately is captured by the length 
measurement error, EL, a metrological characteristic of the CMMs’ defined in EN ISO 10360 [2] 

                                                 
1 Alternative definitions of the measurand are possible, for example the distance between the 

intersections of the cylinder axis with the two planes. 
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likely available for most CMMs under metrological confirmation regime. EL (or EL,MPE) is used 
to derive the input uncertainties in the measurement model. 

II-2 Theoretical background 
Details on the assumptions as well as the analysis of some models developed for this approach 
(Method B2) was published in [3] and [4]. Their most important characteristics are the following: 

- According to the classification of techniques for uncertainty estimation in coordinate 
metrology given in CEN ISO/TS 15530-1 [5], the method belongs to the "sensitivity 
analysis" category. 

- The method is in line with the GUM [6]. A model is developed for individual coordinate 
measurements from which the sensitivity coefficients are derived. The input 
uncertainties are evaluated and propagated to the combined uncertainty by 
multiplication by the sensitivity coefficients. 

- The input standard uncertainties are type B evaluated as suggested in EN ISO 14253-2 
[7] (8.3.2). The  largest possible error 𝑎𝑎 is multiplied by a coefficient 𝑏𝑏 that accounts for 
the known/assumed probability distribution of the error: 𝑢𝑢 = 𝑎𝑎𝑏𝑏. When the error is 
caused by a measuring instruments, [7] (8.4.5) suggests to give 𝑎𝑎 the value of the MPE 
(Maximum Permissible Error) assigned to the instrument. In the case of a CMM 
measuring point-to-point distances–which is that of interest for the method–the relevant 
MPE is EL,MPE (EN ISO 10360-2 [2]):  𝑎𝑎 = EL,MPE. In the absence of other information, 
the probability distribution must be assumed: if uniform, then 𝑏𝑏 = 1/√3; if normal, 𝑏𝑏 =
1 2⁄  or 𝑏𝑏 = 1 3⁄ . When the actual results of the acceptance or reverification test of a 
specific CMM are available, then the values 𝑎𝑎 and 𝑏𝑏 can derived based on them instead 
of the more generic MPE value and assumption on the distribution. This documents 
illustrates this latter case. 

- The method proceeds per closed form equations, and is similar in that to cases known 
from classical geometrical metrology. 

II-3 Comparison of method B2 with a pure geometrical 
approach 

Here below is a comparison between the measurement and uncertainty evaluation of the 
radius of a circle arc with pure geometry and GUM evaluation and coordinate measurement 
and method B2. 
 

Pure geometry and GUM evaluation Coordinate measurement and method B2 

  

Measured quantities 

Sag 𝑠𝑠 and chord 𝑐𝑐 Coordinates of points  A, B, C 
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𝑅𝑅(𝑐𝑐, 𝑠𝑠) =
𝑐𝑐2

8𝑠𝑠
+
𝑠𝑠
2

 

 

𝑅𝑅 =
𝑎𝑎𝑏𝑏𝑐𝑐
4𝑆𝑆

 

where 

𝑎𝑎, 𝑏𝑏, 𝑐𝑐 are the side lengths; 

𝑆𝑆 is the area of the triangle. 
The sides lengths are the Cartesian distance 
between vertex pairs: 

𝑎𝑎 = �𝑥𝑥BC2 + 𝑦𝑦BC2 + 𝑧𝑧BC2  

𝑏𝑏 = �𝑥𝑥CA2 + 𝑦𝑦CA2 + 𝑧𝑧CA2  

𝑐𝑐 = �𝑥𝑥AB2 + 𝑦𝑦AB2 + 𝑧𝑧AB2  

where, e.g., 

𝑥𝑥BC = 𝑥𝑥C−𝑥𝑥B is the difference of the 𝑥𝑥 
coordinates of the vertexes B and C, 
and similarly for the others. 

The area 𝑆𝑆 is calculated from the geometrical 
interpretation of the vector product  

𝑆𝑆 =
‖𝐀𝐀𝐀𝐀 × 𝐀𝐀𝐀𝐀‖

2
 

Measurement model 

𝑅𝑅(𝑐𝑐, 𝑠𝑠) =
𝑐𝑐2

8𝑠𝑠
+
𝑠𝑠
2

 

 

𝑅𝑅(𝑥𝑥AB,𝑦𝑦AB, 𝑧𝑧AB, 𝑥𝑥AC,𝑦𝑦AC, 𝑧𝑧AC, 𝑥𝑥BC,𝑦𝑦BC, 𝑧𝑧BC) =

=
𝑎𝑎𝑏𝑏𝑐𝑐
2𝑀𝑀

 

where 

𝑀𝑀 = �𝑀𝑀𝑥𝑥
2 + 𝑀𝑀𝑦𝑦

2 + 𝑀𝑀𝑧𝑧
2 

𝑀𝑀𝑥𝑥 = 𝑦𝑦AB ∙ 𝑧𝑧AC − 𝑧𝑧AB ∙ 𝑦𝑦AC 

𝑀𝑀𝑦𝑦 = 𝑧𝑧AB ∙ 𝑥𝑥AC − 𝑥𝑥AB ∙ 𝑧𝑧AC 

𝑀𝑀𝑧𝑧 = 𝑥𝑥AB ∙ 𝑦𝑦AC − 𝑦𝑦AB ∙ 𝑥𝑥AC 

Input quantities for models 

Lengths 

𝑐𝑐 and  𝑠𝑠 

Differences of coordinates 

𝑥𝑥AB,𝑦𝑦AB, 𝑧𝑧AB, 𝑥𝑥AC,𝑦𝑦AC, 𝑧𝑧AC, 𝑥𝑥BC,𝑦𝑦BC, 𝑧𝑧BC 
 

Combined standard uncertainty (assuming no correlation) 
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𝑢𝑢𝑅𝑅 = ��
𝜕𝜕𝑅𝑅
𝜕𝜕𝑐𝑐

∙ 𝑢𝑢𝑐𝑐�
2

+ �
𝜕𝜕𝑅𝑅
𝜕𝜕𝑠𝑠

∙ 𝑢𝑢𝑠𝑠�
2

 

where 
𝜕𝜕𝑅𝑅
𝜕𝜕𝑐𝑐

=
𝑐𝑐

4𝑠𝑠
 

𝜕𝜕𝑅𝑅
𝜕𝜕𝑠𝑠

=
−𝑐𝑐2

8𝑠𝑠2
+

1
2

 

 

𝑢𝑢𝑅𝑅 = ���
𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑖𝑖

𝑢𝑢𝑥𝑥𝑖𝑖�
29

𝑖𝑖=1

 

where the differences in 𝑥𝑥,𝑦𝑦, 𝑧𝑧 coordinates 
are generally designated as xi, the standard 
uncertainties of their measurements are 
generally designated as uxi  

𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥AB

=
𝑎𝑎𝑏𝑏𝑥𝑥AB
2𝑐𝑐𝑀𝑀

−
𝑎𝑎𝑏𝑏𝑐𝑐�−𝑀𝑀𝑦𝑦𝑧𝑧AC + 𝑀𝑀𝑧𝑧𝑦𝑦𝐴𝐴𝐴𝐴�

2𝑀𝑀3  

𝜕𝜕𝑅𝑅
𝜕𝜕𝑦𝑦AB

=
𝑎𝑎𝑏𝑏𝑦𝑦AB
2𝑐𝑐𝑀𝑀

−
𝑎𝑎𝑏𝑏𝑐𝑐(𝑀𝑀𝑥𝑥𝑧𝑧AC −𝑀𝑀𝑧𝑧𝑥𝑥AC)

2𝑀𝑀3  

𝜕𝜕𝑅𝑅
𝜕𝜕𝑧𝑧AB

=
𝑎𝑎𝑏𝑏𝑧𝑧AB
2𝑐𝑐𝑀𝑀

−
𝑎𝑎𝑏𝑏𝑐𝑐�−𝑀𝑀𝑥𝑥𝑦𝑦AC + 𝑀𝑀𝑦𝑦𝑥𝑥AC�

2𝑀𝑀3  

𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥AC

=
𝑎𝑎𝑐𝑐𝑥𝑥AC
2𝑏𝑏𝑀𝑀

−
𝑎𝑎𝑏𝑏𝑐𝑐�𝑀𝑀𝑦𝑦𝑧𝑧AB − 𝑀𝑀𝑧𝑧𝑦𝑦AB�

2𝑀𝑀3  

𝜕𝜕𝑅𝑅
𝜕𝜕𝑦𝑦AC

=
𝑎𝑎𝑐𝑐𝑦𝑦AC
2𝑏𝑏𝑀𝑀

−
𝑎𝑎𝑏𝑏𝑐𝑐(−𝑀𝑀𝑥𝑥𝑧𝑧AB + 𝑀𝑀𝑧𝑧𝑥𝑥AB)

2𝑀𝑀3  

𝜕𝜕𝑅𝑅
𝜕𝜕𝑧𝑧AB

=
𝑎𝑎𝑐𝑐𝑧𝑧AC
2𝑏𝑏𝑀𝑀

−
𝑎𝑎𝑏𝑏𝑐𝑐�𝑀𝑀𝑥𝑥𝑦𝑦AB − 𝑀𝑀𝑦𝑦𝑥𝑥AB�

2𝑀𝑀3  

𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥CB

=
𝑏𝑏𝑐𝑐𝑥𝑥CB
2𝑎𝑎𝑀𝑀

 

𝜕𝜕𝑅𝑅
𝜕𝜕𝑦𝑦CB

=
𝑏𝑏𝑐𝑐𝑦𝑦CB
2𝑎𝑎𝑀𝑀

 

𝜕𝜕𝑅𝑅
𝜕𝜕𝑧𝑧CB

=
𝑏𝑏𝑐𝑐𝑧𝑧CB
2𝑎𝑎𝑀𝑀

 

The above equations are in scalar notation 
and may appear complicated. They can be 
expressed more compactly by using vectorial 
notation: 

∇𝐀𝐀𝐀𝐀𝑅𝑅 =
𝑎𝑎𝑏𝑏
4𝑆𝑆

𝒏𝒏𝐀𝐀𝐀𝐀 −
𝑎𝑎𝑏𝑏

8𝑆𝑆2
(𝐀𝐀𝐀𝐀 × 𝒎𝒎) 

∇𝐀𝐀𝐀𝐀𝑅𝑅 =
𝑎𝑎𝑐𝑐
4𝑆𝑆

𝒏𝒏𝐀𝐀𝐀𝐀 −
𝑎𝑎𝑏𝑏

8𝑆𝑆2
(𝒎𝒎 × 𝐀𝐀𝐀𝐀) 

∇𝐀𝐀𝐀𝐀𝑅𝑅 =
𝑏𝑏𝑐𝑐
4𝑆𝑆

𝒏𝒏𝐀𝐀𝐀𝐀 

where 

∇𝑣𝑣𝑅𝑅 = �𝜕𝜕𝑅𝑅
𝜕𝜕𝑣𝑣𝑖𝑖
� is the gradient of 𝑅𝑅 with 

respect to the vectors of the triangle sides 
(𝒗𝒗 = {𝐀𝐀𝐀𝐀,𝐀𝐀𝐀𝐀,𝐀𝐀𝐀𝐀}); 

𝒏𝒏𝒗𝒗 = 𝒗𝒗
‖𝒗𝒗‖

 are the unit vectors of the  
triangle sides (𝒗𝒗 = {𝐀𝐀𝐀𝐀,𝐀𝐀𝐀𝐀,𝐀𝐀𝐀𝐀}); 



EUCoM D2 Report: A Priori (type B) evaluation  11/2021 

- II-6 - 

𝒎𝒎 = 𝐀𝐀𝐀𝐀×𝐀𝐀𝐀𝐀
‖𝐀𝐀𝐀𝐀×𝐀𝐀𝐀𝐀‖

 is the unit vector normal to the 
triangle. 
The above equations are derived 
considering that, in general, the gradient of 
the norm of a vector 𝒘𝒘 relative to a vector 𝒗𝒗 
is 

∇𝒗𝒗‖𝒘𝒘‖ = 𝑱𝑱𝒘𝒘|𝒗𝒗
T 𝒏𝒏𝒘𝒘 

where 

𝑱𝑱𝒘𝒘|𝒗𝒗 = �𝜕𝜕𝑤𝑤𝑖𝑖
𝜕𝜕𝑣𝑣𝑗𝑗

� is the Jacobian matrix of 𝒘𝒘 
relative to 𝒗𝒗 

𝒏𝒏𝒘𝒘 = 𝒘𝒘
‖𝒘𝒘‖

 is the unit vector of 𝒘𝒘 

Example of numerical calculation 

𝑅𝑅 = 50 mm, EL,MPE = 2 + 0.004 L, b=1/3 

𝑢𝑢𝑠𝑠 = 𝐸𝐸L,MPE/3 = (2 + 0,004𝑠𝑠)/3 

𝑢𝑢𝑐𝑐 = 𝐸𝐸L,MPE/3 = (2 + 0,004𝑐𝑐)/3 

𝑢𝑢𝑥𝑥𝑖𝑖 = 𝐸𝐸L,MPE/3 = (2 + 0,004𝑥𝑥𝑖𝑖)/3 

A, B, C taken on a horizontal plane, B, C at the 
extremes and A at the midpoint of the arc 

Uncertainty budget for 𝑠𝑠 = 8 mm 

 𝑥𝑥𝑖𝑖/mm 
𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑖𝑖

 𝑢𝑢𝑖𝑖/μm 
𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑖𝑖

𝑢𝑢𝑖𝑖/µm 

𝑠𝑠 8.000 -5.25 0.68 -3.56 
𝑐𝑐 54.259 1.70 0.75 1.25 

   𝑢𝑢𝑅𝑅 = 3.77 
 

 𝑥𝑥𝑖𝑖/mm 
𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑖𝑖

 𝑢𝑢𝑖𝑖/μm 𝜕𝜕𝑅𝑅𝜕𝜕𝑥𝑥𝑖𝑖 𝑢𝑢𝑖𝑖/µm 

𝑥𝑥AB -27.129 -0.774 0.703 -0.544 
𝑦𝑦AB  -8.00 2.625 0.677 1.778 
𝑧𝑧AB  0.00 0.000 0.667 0.000 
𝑥𝑥AC  27.129 0.774 0.703 0.544 
𝑦𝑦AC  -8.00 2.625 0.677 1.778 
𝑧𝑧AC  0.00 0.000 0.667 0.000 
𝑥𝑥BC  54.259 0.922 0.739 0.681 
𝑦𝑦BC  0.00 0.000 0.667 0.000 
𝑧𝑧BC  0.00 0.000 0.667 0.000 

   𝑢𝑢𝑅𝑅 = 2.72 
 

Uncertainty budget for 𝑠𝑠 = 25 mm 

 𝑥𝑥𝑖𝑖/mm 
𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑖𝑖

 𝑢𝑢𝑖𝑖/μm 
𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑖𝑖

𝑢𝑢𝑖𝑖/µm 

𝑠𝑠 25.000 -1.00 0.70 -0.70 
𝑐𝑐 86.603 0.87 0.78 0.68 

   𝑢𝑢𝑅𝑅 = 0.97 
 

 𝑥𝑥𝑖𝑖/mm 
𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑖𝑖

 𝑢𝑢𝑖𝑖/μm 𝜕𝜕𝑅𝑅𝜕𝜕𝑥𝑥𝑖𝑖 𝑢𝑢𝑖𝑖/µm 

𝑥𝑥AB -43.301 -0.289 0.724 -0.209 
𝑦𝑦AB  -25.000 0.500 0.700 0.350 
𝑧𝑧AB  0.000 0.000 0.667 0.000 
𝑥𝑥AC  43.301 0.289 0.724 0.209 
𝑦𝑦AC  -25.000 0.500 0.700 0.350 
𝑧𝑧AC  0.000 0.000 0.667 0.000 
𝑥𝑥BC  86.603 0.577 0.782 0.452 
𝑦𝑦BC  0.000 0.000 0.667 0.000 
𝑧𝑧BC  0.000 0.000 0.667 0.000 

   𝑢𝑢𝑅𝑅 = 0.732 
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Uncertainty budget for 𝑠𝑠 = 50 mm 

 𝑥𝑥𝑖𝑖/mm 
𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑖𝑖

 𝑢𝑢𝑖𝑖/μm 
𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑖𝑖

𝑢𝑢𝑖𝑖/µm 

𝑠𝑠 50.000 0 0.73 0 
𝑐𝑐 100.001 0.5 0.8 0.40 

   𝑢𝑢𝑅𝑅 = 0.40 

 
 

 𝑥𝑥𝑖𝑖/mm 
𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑖𝑖

 𝑢𝑢𝑖𝑖/μm 𝜕𝜕𝑅𝑅𝜕𝜕𝑥𝑥𝑖𝑖 𝑢𝑢𝑖𝑖/µm 

𝑥𝑥AB -50.000 0.0 0.733 0.000 
𝑦𝑦AB  -50.000 0.0 0.733 0.000 
𝑧𝑧AB  0.000 0.0 0.667 0.000 
𝑥𝑥AC  50.000 0.0 0.733 0.000 
𝑦𝑦AC  -50.000 0.0 0.733 0.000 
𝑧𝑧AC  0.000 0.0 0.667 0.000 
𝑥𝑥BC  100.000 0.5 0.800 0.400 
𝑦𝑦BC  0.000 0.0 0.667 0.000 
𝑧𝑧BC  0.000 0.0 0.667 0.000 

   𝑢𝑢𝑅𝑅 = 0.400 
 

Comparison of results 

 
Figure II-1: Arc of a circle by three points. Comparison of uncertainties with a pure geometry 
approach (red) and method B2 (sensitivity analysis, blue). 
 
The method (B2) leads to very similar uncertainties to those obtained with a pure geometry 
GUM-compliant analysis, when the assumption of the input uncertainty is the same (based 
on the point-to-point MPE). 

 

II-4 Essential sets of points and their relations 
Method B2 treats coordinate measurements as indirect measurements on an essential 
(minimal) set of points, with their differences in coordinates taken as input quantities in the 
measurement model. It allows to determine the measurement uncertainty of all geometric 
characteristics, namely distances, angles, form, orientation, location and run-out deviations [8]. 
Examples of essential sets of points and the basic equations for the derivation of such 
characteristics are given below. 

II-4.1 Angle between planes 
The minimum number of points is 6. They are divided in two triples, (A, B, C) and (K, L, M), each 
defining a plane. 
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Figure II-2: Essential set of points for measuring an angle between planes. 

The angle between planes is equal to that between any vectors 𝒗𝒗 and 𝒘𝒘 normal to the planes: 

cos𝛼𝛼 =
𝒗𝒗T𝒘𝒘

‖𝒗𝒗‖‖𝒘𝒘‖
 

The vectors 𝒗𝒗 and 𝒘𝒘 normal to the planes through points A, B, C and K, L, M, respectively, can 
be calculated using the geometric interpretation of the vector product as 

𝒗𝒗 = 𝐀𝐀𝐀𝐀 × 𝐀𝐀𝐀𝐀,         𝒘𝒘 = 𝐊𝐊𝐊𝐊 × 𝐊𝐊𝐊𝐊  

II-4.2 Flatness  
Two cases should be considered, one for convex or concave surfaces, and one for twisted 
surfaces. In both cases the minimum number of points is 4, but their distributions on the surface 
are different. 

In the case of convex or concave surfaces, three points A, B, C define a plane and the fourth 
point S the peak of the form deviation.  
 

 
Figure II-3: Essential set of points for measuring flatness for convex or concave surfaces. 

The form deviation is calculated as the distance of the central point S to the plane ABC: 

𝑙𝑙(AS, AB, AC) =
�𝐀𝐀𝐒𝐒T(𝐀𝐀𝐀𝐀 × 𝐀𝐀𝐀𝐀)�
‖𝐀𝐀𝐀𝐀 × 𝐀𝐀𝐀𝐀‖

 

 
Figure II-4: Essential set of points for measuring flatness for twisted surfaces. 
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In the case of twisted surfaces, the points A, B defines the locus of the surface points whose 
local normal directions are parallel2. The locus is a line, which is assumed straight so that two 
points define it completely. Points C, D are at the extremes of the twisted surface on opposite 
sides of the line AB.  
The form deviation is calculated as the distance of two straight lines 

𝑙𝑙(AC, BA, DC) =
�𝐀𝐀𝐀𝐀T(𝐀𝐀𝐀𝐀 × 𝐃𝐃𝐀𝐀)�
‖𝐀𝐀𝐀𝐀 × 𝐃𝐃𝐀𝐀‖

 

II-4.3 Coaxiality  
The minimum number of points is 3. A and B define the datum (axis of the cylinder on the left 
hand side in Figure II-5) and S defines the peak deviation of the median line of the cylinder on 
the right hand side in Figure II-5 from the datum. 
 

      
Figure II-5: Essential set of points for measuring coaxiality. 

The coaxiality CX is twice the distance 𝑙𝑙 of the point S to the axis AB: 

CX = 2𝑙𝑙(AS, AB) = 2
‖𝐀𝐀𝐒𝐒 × 𝐀𝐀𝐀𝐀‖
‖𝐀𝐀𝐀𝐀‖

 

II-4.4 Position of median lines relative to a datum system 
constructed from a plane, an axis and a symmetry plane 

The primary datum X is a plane, which constrains the spatial orientation and orthogonally the 
location. The secondary datum Y is the axis of a cylinder, which constrains the location in the 
plane X. The tertiary datum Z is a symmetry plane, which constrains the planar orientation. As 
a result, the datum system fully constrains the tolerance zones. 
The position of the median lines of three cylinders are toleranced and then are to be measured. 
They are the three bores around the workpiece centre (ø 12,5, close to points A, B, C). 

The minimum number of points is 7. A, B, C define the plane X, D the axis Y, E the plane Z, and 
S the peak deviation of the median line of one of the toleranced cylinders. Note that one point 
is sufficient for defining the axis Y because its orientation is already defined by the primary 
datum. Similarly, one point is sufficient for the symmetry plane Z because it is constrained to 
be through the axis Y. 

                                                 
2 If the surface is regarded as a hill, the line is the crest of the hill. 



EUCoM D2 Report: A Priori (type B) evaluation  11/2021 

- II-10 - 

 
Figure II-6: Essential set of points for measuring the position of the median line relative to a 
datum system. 

The coordinates of the point S in the plane X are3 

𝑺𝑺 = �
𝐄𝐄𝐒𝐒 ∙ (𝐀𝐀𝐀𝐀 × 𝐀𝐀𝐀𝐀) × 𝐃𝐃𝐄𝐄

‖(𝐀𝐀𝐀𝐀 × 𝐀𝐀𝐀𝐀) × 𝐃𝐃𝐄𝐄‖

𝐃𝐃𝐒𝐒 ∙ [(𝐀𝐀𝐀𝐀 × 𝐀𝐀𝐀𝐀) × 𝐃𝐃𝐄𝐄] × (𝐀𝐀𝐀𝐀 × 𝐀𝐀𝐀𝐀)
‖[(𝐀𝐀𝐀𝐀 × 𝐀𝐀𝐀𝐀) × 𝐃𝐃𝐄𝐄] × (𝐀𝐀𝐀𝐀 × 𝐀𝐀𝐀𝐀)‖

� 

The position of the point S is relative to that of the theoretical exact axis of the toleranced bore. 
Because the position tolerance zone is defined by a diameter, the position value, POS, is twice 
the offset of S from the axis: 

POS = 2‖𝑺𝑺 − 𝑪𝑪TED‖ 

Where 𝑪𝑪TED is the theoretical exact position of the axis. For instance, it is 𝑪𝑪TEDT = (45,26) for 
the cylinder indicated by the tolerance callout. 

II-4.5 Complete list 
13 models and 34 examples of their use have been identified (Table II-1). 

Table II-1: List of geometrical relations among essential sets of points and examples of their 
use 

# Model 
No of 

essential 
points 

Examples 

1 Distance between two points A and 
B 2 

- distance between sphere centres, 
- distance between circle centres in 

a plane 

                                                 
3 The coordinate of S along the axis Y is not relevant. Let us consider the 2D projection onto the plane X. 

A B 

C 

D 

E 
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2 Distance of a point S to the straight 
line through two points A and B 3 

- straightness of an axis,  
- straightness of a generatrix,  
- straightness of a line on a plane  
- coaxiality of an axis with respect to 

a datum axis, 
- coaxiality of axes with respect to a 

common datum axis, 
- concentricity  
- distance between axes  
- position of an axis with respect to a 

datum axis 
- circular runout, 
- total circular runout 

3 
Distance of a point S to a straight 
line through a point A, parallel to 
that through two points A and B 

4 - parallelism of axes with cylindrical 
tolerance zone 

4 
Distance of a point S to a straight 
line through a point A, normal to a 
plane through three points B, C, D 

5 - perpendicularity of an axis with 
respect to a datum plane 

5 Distance between of a point S to a 
plane through three points A, B, C 4 

- flatness of a concave or convex 
surfaces 

- position of a point with respect to a 
datum plane 

- parallelism of an axis to a datum 
plane (nominally lying on the 
plane) 

6 
Distance between a point S to a 
plane through a point A, parallel to 
that through three points B, C, D 

5 

- parallelism of a plane to a datum 
plane 

- parallelism of an axis to a datum 
plane 

7 

Distance between a point S to a 
plane through a point A, normal to 
a straight line through two points B 
and C 

4 

- perpendicularity of a plane with 
respect to a datum axis,  

- perpendicularity of a line with 
respect to a datum axis,  

- axial run-out,  
- total axial run-out 

8 

Distance between a point S to a 
plane through a point A, parallel to 
a straight line through two points A 
and B, and perpendicular to a 
plane through three points C, D, E 

6 - in-plane parallelism of axes 

9 

Distance between a point S to a 
plane through two points A and B, 
parallel to a straight line through 
two points C and D 

5 - parallelism of a plane with respect 
to a datum axis 

10 

Distance of a point S to a plane 
through two points A and B, 
perpendicular to a plane through 
three points C, D, E 

6 

- position of a point with respect to a 
secondary datum plane 

- position of an axis with respect to a 
secondary datum in a datum 
system 

- position of the median plane with 
respect to secondary datum in a 
datum system 

- perpendicularity of a plane with 
respect to a datum plane 
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11 

Distance of a point S to a plane 
through a point F, orthogonal to a 
plane through two points D and E, 
both planes orthogonal to a plane 
through three points A, B, C 

7 

- position of a point with respect to 
the tertiary datum plane, in a 
datum system made of three 
planes 

- position of an axis with respect to 
the tertiary datum plane, in a 
datum system made of three 
planes 

- position of a plane with respect to 
the tertiary datum plane, in a 
datum system made of three 
planes 

12 
Distance between two straight 
lines, each through two points (A, 
B) and (C, D) 

4 - flatness of a twisted surface 

13 
Angle between two planes, each 
through three points (A, B, C) and 
(D, E, F) 

6 - angle between two planes 

II-5 Validation of the method B2 
Case studies were investigated to validate the method B2. The experimental results gathered 
in the measurement campaign for validating the method A were used [9]. The procedure 
described in EN ISO/TS 15530-3 [10] based on 20 measurements of artefacts with known 
values of characteristics was followed. A deviation from it was due to the impossibility of 
correcting the bias. 
The considered measurands were: 

1. Size. 
a. An external diameter was measured with one CMM. The artefact was an 80 mm 

diameter cylindrical square. 
b. An internal diameter was measured with three CMMs. The artefacts were a 

100 mm ring gauge for one CMM and a 45 mm ring gauge for the other two. 
2. Size of a partial feature. The internal diameter of an arc of a circle was measured 

with three CMMs. The artefacts were a 100 mm ring gauge for one CMM and a 45 
mm ring gauge for the other two. Four different arcs were measured. 

3. Coaxiality. A cylindrical square was measured. 
4. Others. In addition, uncertainties were evaluated according to the method B2 for 

most characteristics of the artefacts used in the project validation round-robin. 

II-5.1 Procedure 
The uncertainty evaluated according to [10] was compared with that evaluated according to 
the method B2. A chi-squared test was performed to confirm the null hypothesis of coincidence 
of the two methods. 
The comparison was carried out in three main steps: 

1. Evaluation of the uncertainty according to [10]. In turn, this was divided in two steps: 
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a. The mean value 𝑦𝑦�, the bias 𝑏𝑏 and the standard deviation of the measurement 
procedure 𝑢𝑢p were evaluated4. 

b. The combined standard (𝑢𝑢) and expanded (𝑈𝑈) uncertainties were derived. [10] 
imposes to correct the bias and then to evaluate the uncertainty as5  

𝑈𝑈 = 2�𝑢𝑢cal2 + 𝑢𝑢p2 + 𝑢𝑢𝑏𝑏2 

In this logic, 𝑢𝑢𝑏𝑏 is type B evaluated based on thermal effects only. Unfortunately, 
the correction of the bias was not possible, and an alternative equation to 
propagate the uncertainty was sought. Three were considered: 

𝑈𝑈1 = 2�𝑢𝑢cal2 + 𝑢𝑢p2 + |𝑏𝑏| 

𝑈𝑈2 = 2�𝑢𝑢cal2 + 𝑢𝑢p2 + 𝑏𝑏2 

𝑈𝑈3 = 2�𝑢𝑢cal2 + 𝑢𝑢p02 ,        with  𝑢𝑢p0 = �∑ (𝑦𝑦𝑖𝑖 − 𝑥𝑥cal)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛 − 1
 

𝑈𝑈2  assigns 𝑏𝑏 a bimodal distribution6. 𝑈𝑈3 incorporates the bias into 𝑢𝑢p (denoted 
as 𝑢𝑢p0 to avoid confusion)  by calculating the root of the second-order moment 
about the known value 𝑥𝑥cal rather than the mean value 𝑦𝑦�. It is worth noticing 
that the second and third equations yield practically identical results7, 𝑈𝑈2 ≈ 𝑈𝑈3. 
These equations are appropriate for errors distributed normally or at least 
symmetrically about the zero. This is a reasonable assumption for 
characteristics with nominal value (significantly) different from nought, such as 
dimensions and signed distances, whose errors may assume negative as well 
as positive values. For those errors assuming non-negative values only, such 
as nominally-null unsigned distances–so important in many geometrical 
specifications–evaluating the expanded uncertainty 𝑈𝑈 as the 95 % quantile of 
the relevant distribution (𝐹𝐹−1(0.95) where 𝐹𝐹 is the cumulative distribution 
function) seems more appropriate. A strong candidate distribution is the 
Rayleigh distribution8, which characterises the norm of a 2D vector with 
independent equally-varied normally-distributed components. This results in a 
fourth option:  

                                                 
4 The mean value is that of the 20 measurements gathered during the procedure, 𝑦𝑦� = 1

𝑛𝑛−1
∑ 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1 . The 

bias is the deviation of the mean value from the known value, 𝑏𝑏 = 𝑦𝑦� − 𝑥𝑥cal. 𝑢𝑢p is the standard deviation 

of the 20 measurements gathered during the procedure, 𝑢𝑢p = � 1
𝑛𝑛−1

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1 . 

 
5 The component 𝑢𝑢w due to the workpiece is disregarded because the method B2 does not cover these 

effects. 
6 A bimodal distribution with two possible discrete values, ±𝑏𝑏, with equal probability ½ has  variance 
𝜎𝜎2 = 𝑏𝑏2. This may be considered to match the case of uncorrected bias: the amount of bias |𝑏𝑏| is 
known and we pretend not to know the sign to justify the lack of correction. 

7 The difference between the two is 𝑈𝑈3 − 𝑈𝑈2 = 1
√𝑛𝑛−1

𝑏𝑏
𝑈𝑈

, with 𝑈𝑈 = 𝑈𝑈3+𝑈𝑈2
2

. This is negligible for large 𝑛𝑛 and 
when the bias is not dominant. 

8 The Weibull distribution was used instead in the following analysis for practical reasons. The results 
are similar. 
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𝑈𝑈4 = 2�𝑢𝑢cal2 + �
𝐹𝐹−1(0.95)

2
�
2

 

2. The uncertainty was evaluated with the method B2. 
3. Chi-square analysis was performed to test for equality the uncertainties estimated 

by method B2 and experimentally. The chi-squared variable was evaluated as 

𝜒𝜒2 =
𝑛𝑛𝜎𝜎2

𝜎𝜎02
 

where 𝜎𝜎 and 𝜎𝜎0 are the standard uncertainties evaluated experimentally and with 
the Method B2, respectively, and 𝑛𝑛 is the sample size (20). The critical values 
𝜒𝜒cr12 ,𝜒𝜒cr22  used as thresholds in the testing are the 2.5 % and 97.5 % quantiles, 
respectively, for a chi-squared distribution with 19 degrees of freedom. The test 
main characteristics are summarised in Table II-2. 
The chi-squared values obtained in the analysis will be reported with a colour code 
(Table II-3). 

Table II-2: Comparison of the uncertainties evaluated experimentally and with 
method B2: hypotheses and critical values for the chi-squared tests. 𝜎𝜎 and 𝜎𝜎0 are 
the standard uncertainties evaluated experimentally and with the Method B2, 
respectively. 

Test 
Null 

hypothesis, 
𝑯𝑯𝟎𝟎 

Alternative 
hypothesis, 

𝑯𝑯𝟏𝟏 
Null hypothesis criterion 

Two-tailed 𝜎𝜎2 = 𝜎𝜎02 𝜎𝜎2 ≠ 𝜎𝜎02 

𝜒𝜒cr12 ≤ 𝜒𝜒2 ≤ 𝜒𝜒cr22  

𝜒𝜒cr12 (0.025, 19) = 8.907 

𝜒𝜒cr22 (0.975, 19) = 32.852 

 

Table II-3: Colour-code for the results of the chi-squared analysis. 

Colour Criterion Method B2 likely … 
 𝜒𝜒2 ≤ 𝜒𝜒cr12  … overestimates the uncertainty 

 𝜒𝜒cr12 ≤ 𝜒𝜒2 ≤ 𝜒𝜒cr22  … properly estimates the uncertainty  

 𝜒𝜒2 > 𝜒𝜒cr22  … underestimates the uncertainty 

 

II-5.2 Coaxiality 

II-5.2.1 Validation plan 
A 80 mm diameter cylinder square (Figure II-7) was used for testing the method B2 on two 
characteristics: coaxiality and diameter. This section reports the outcomes for coaxiality; see 
the next section for the diameter. 
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Figure II-7: The cylinder square used for the testing.  
The measurements were carried out with a CMM Aberlink - Zenith Too with PH10T probing 
system with specification EL,MPE = ±(4 + 6L) µm, and Aberlink 3D software. Measurements 
were repeated 20 times at long time intervals as recommended in .  
The cylinder was measured as a sequence of 17 circles. They were as many right sections at 
intervals of 5 mm along the cylinder length, thus covering 80 mm of length.  
To investigate the effect on the coaxiality of the distance of specific sections to the datum 
feature and of the datum feature extension, the datum feature A was taken on the leftmost 
portion of the cylinder with increasing lengths (Figure II-8a). Six datums were established with 
datum feature lengths of (10, 15, 20, 25, 30, 35) mm, respectively. A seventh datum was taken 
as a common datum A-B based on the two sections at the extremes (Figure II-8b). The 
coaxiality was evaluated at individual sections. Only the sections on the right hand side of the 
datum feature at increasing distances to it were evaluated for the case in Figure II-8a. All 
sections but the extreme two were evaluated for the common datum case in Figure II-8b. 

a) 

 

b) 

 

Figure II-8: Drawing of the cylinder with the indication of the datum and datum feature(s), and 
of a right section under coaxiality investigation. a) with a single datum; b) with a common 
datum. 
The coaxiality known by calibration value was nought (nearly-perfect cylinder). 

The experimental uncertainty 𝑈𝑈 was evaluated [10] for each right section with the three 
equations 𝑈𝑈1,𝑈𝑈2,𝑈𝑈4. 𝑈𝑈3 was disregarded because of its similarity to 𝑈𝑈2. The uncertainty was 
evaluated according to method B2 too with two values of the 𝑏𝑏 coefficient to derive the standard 
uncertainty from the maximum error expressed by the MPE. They were 𝑏𝑏1 = 1

√3
≈ 0.577 in the 

assumption of a uniform distribution and 𝑏𝑏2 = 0.459 derived from the actual errors of indication 
incurred during a previous EN ISO 10360-2 test9. 

                                                 
9 The EN ISO 10360-2 test was not part of the current validation. The data used for evaluating 𝑏𝑏2 had 

been stored during the test and retrieved and evaluated for the purpose. 
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The chi-square of the experimental uncertainty 𝑈𝑈4 (quantile-based approach) with a Weibull 
distribution10 versus the method B uncertainty was calculated. 𝑈𝑈4 only was used in the 
chi-square analysis as deemed as the most suited: coaxiality (and any other geometrical 
deviation) always hold positive values. Figure II-9 illustrates an example of the experimental 
distribution of the expanded uncertainty values 𝑈𝑈4. 

  
Figure II-9: Exemplar log-log plot of the distribution of uncertainties evaluated as 95 % 
quantiles of a Weibull distribution. The horizontal 𝑥𝑥 axis is the logarithm of the measured values 
of coaxiality, 𝜀𝜀, in micrometres, 𝑥𝑥 = ln 𝜀𝜀

1 μm
. The vertical 𝑦𝑦 axis is 𝑦𝑦 = ln{−ln[1 − 𝐹𝐹(𝜀𝜀)]}, where 

𝐹𝐹 is the cumulative Weibull distribution. The function 𝑦𝑦 would exhibit a linear behaviour in case 
of perfectly Weibull-distributed data. 
The evaluation was carried out by means of a MS Excel spreadsheet (cylindrical square.xlsx). 
Inputs to it were: 

- Date and time of measurements; 

- Values of the coefficients 𝐴𝐴 and 𝐵𝐵 in the expression of EL,MPE; 

- Values of the coefficients 𝑏𝑏1 and 𝑏𝑏2 to derive the standard uncertainty from the CMM 
MPE; 

- Calibration standard uncertainty 𝑢𝑢cal of the axis straightness of the cylindrical square; 

- Value 𝐷𝐷 and Standard uncertainty 𝑢𝑢cal(𝐷𝐷) of the diameter of the cylindrical square; 

II-5.2.2 Summary of the validation plan 
The validation plan for the coaxiality is summarised in Table II-4. 

                                                 
10 Similar results would have been achieved with a Rayleigh distribution. 
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Table II-4: Summary of the validation plan for coaxiality. 

Symbol Dimension Values Description 

𝑙𝑙A 
Length of the datum (A) 
feature (leftmost cylinder 
portion) 

(10, 15, 20, 25, 
30, 35) mm  

𝑙𝑙A−B Distance between the two 
common datum (A-B) features 80 mm  

𝑑𝑑 Closest distance of a sections 
to the datum (A) feature 

(5, 10, 15, 20, 
25, 30, 35, 40, 
45, 50, 55, 60, 

65, 70) mm 

Values for the shortest datum 
(A) feature (𝑙𝑙A = 10 mm). For 
longer datum features, the 
number of evaluated sections 
reduces (to fall within the 
total cylinder length) 

ℎ Longitudinal coordinate of a 
section 

(5, 10, 15, 20, 
25, 30, 35, 40, 
45, 50, 55, 60, 
65, 70, 75) mm 

Used only in the case of the 
common datum A-B 

𝑈𝑈 Evaluation method of the 
experimental uncertainty 𝑈𝑈1,𝑈𝑈2,𝑈𝑈4 See II-5.1 bullet 1.b 

𝑏𝑏 

Coefficient to derive the 
method B2 standard 
uncertainty from the maximum 
error MPE 

𝑏𝑏1 =
1
√3

≈ 0.577 

𝑏𝑏2 = 0.459 

(𝑏𝑏1) Uniform distribution 
(𝑏𝑏2) Derived from 
EN ISO 10360-2 testing data 

The chi-squared analysis was performed for 𝑈𝑈 = 𝑈𝑈4 only. 

II-5.2.3 Results 
This section reports the many results obtained in the validation plan. 

For each length of the datum feature, 𝑙𝑙A, and for the common datum A-B, a synoptic table with 
the expanded uncertainties evaluated either experimentally or with the method B2 and its plot 
are reported. 
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Table II-5: Comparison of uncertainties. Length of the datum feature 𝑙𝑙A = 10 mm. 

𝒅𝒅/mm 𝑼𝑼𝟏𝟏/µm 𝑼𝑼𝟐𝟐/µm 𝑼𝑼𝟒𝟒/µm 𝑼𝑼𝐀𝐀𝟐𝟐/µm 
(𝒃𝒃𝟏𝟏 = 0.577) 

𝑼𝑼𝐀𝐀𝟐𝟐/µm 
(𝒃𝒃𝟐𝟐 = 0.459) 

5 8.71 9.62 7.92 10.328 8.211 
10 10.71 11.32 11.37 13.064 10.386 
15 11.16 13.04 9.98 16.653 13.240 
20 15.59 17.81 14.30 20.656 16.422 
25 15.60 18.26 14.38 24.873 19.774 
30 22.20 25.54 20.37 29.212 23.224 
35 24.07 28.74 22.00 33.625 26.733 
40 26.48 30.34 24.44 38.088 30.280 
45 25.82 31.57 23.71 42.583 33.854 
50 30.60 36.60 28.09 47.103 37.447 
55 32.58 39.72 30.25 51.640 41.054 
60 33.45 40.30 30.78 56.190 44.672 
65 37.20 45.52 34.21 60.751 48.298 
70 37.95 45.73 35.04 65.320 51.930 

 
Figure II-10: Plot of the values in Table II-5 (𝑙𝑙A = 10 mm). The horizontal axis is the distance 
of the right section to the datum feature, 𝑑𝑑 (millimetres). The vertical axis is the expanded 
uncertainty (micrometres). 
  

   𝑈𝑈1              𝑈𝑈2             𝑈𝑈4               𝑈𝑈B2(𝑏𝑏 = 0.58)            𝑈𝑈B2(𝑏𝑏 = 0.459) 
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Table II-6: Comparison of uncertainties. Length of the datum feature, 𝑙𝑙A = 15 mm. 

𝒅𝒅/mm 𝑼𝑼𝟏𝟏/µm 𝑼𝑼𝟐𝟐/µm 𝑼𝑼𝟒𝟒/µm 𝑼𝑼𝐀𝐀𝟐𝟐/µm 
(𝒃𝒃𝟏𝟏 = 0.577) 

𝑼𝑼𝐀𝐀𝟐𝟐/µm 
(𝒃𝒃𝟐𝟐 = 0.459) 

5 8.72 9.02 8.07 9.737 7.741 
10 10.00 10.24 9.32 11.102 8.826 
15 10.91 12.17 10.07 13.064 10.386 
20 13.52 14.09 12.78 15.396 12.240 
25 19.33 20.64 18.07 17.955 14.274 
30 21.39 23.85 20.09 20.656 16.422 
35 22.55 24.21 20.98 23.450 18.643 
40 21.43 24.77 19.96 26.309 20.916 
45 23.26 26.82 21.74 29.212 23.224 
50 25.37 29.60 23.63 32.148 25.558 
55 25.71 30.64 24.31 35.108 27.911 
60 28.45 34.55 26.83 38.088 30.280 
65 28.42 34.47 26.52 41.082 32.660 

 

 
Figure II-11: Plot of the values in Table II-6 (𝑙𝑙A = 15 mm). The horizontal axis is the distance 
of the right section to the datum feature, 𝑑𝑑 (millimetres). The vertical axis is the expanded 
uncertainty (micrometres). 
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Table II-7: Comparison of uncertainties. Length of the datum feature, 𝑙𝑙A = 20 mm. 

𝒅𝒅/mm 𝑼𝑼𝟏𝟏/µm 𝑼𝑼𝟐𝟐/µm 𝑼𝑼𝟒𝟒/µm 𝑼𝑼𝐀𝐀𝟐𝟐/µm 
(𝒃𝒃𝟏𝟏 = 0.577) 

𝑼𝑼𝐀𝐀𝟐𝟐/µm 
(𝒃𝒃𝟐𝟐 = 0.459) 

5 7.13 7.49 6.48 9.52 7.57 
10 7.73 8.69 6.98 10.33 8.21 
15 9.17 9.68 8.43 11.55 9.18 
20 14.71 15.60 13.88 13.06 10.39 
25 18.76 19.27 17.79 14.79 11.76 
30 17.03 17.73 15.96 16.65 13.24 
35 15.97 17.08 14.93 18.62 14.80 
40 19.20 20.42 21.43 20.66 16.42 
45 18.90 21.27 17.42 22.74 18.08 
50 19.51 21.72 18.20 24.87 19.77 
55 22.12 25.00 20.41 27.03 21.49 
60 21.67 23.76 20.23 29.21 23.22 

 

 
Figure II-12: Plot of the values in Table II-7 (𝑙𝑙A = 20 mm). The horizontal axis is the distance 
of the right section to the datum feature, 𝑑𝑑 (millimetres). The vertical axis is the expanded 
uncertainty (micrometres). 
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Table II-8: Comparison of uncertainties. Length of the datum feature, 𝑙𝑙A = 25 mm. 

𝒅𝒅/mm 𝑼𝑼𝟏𝟏/µm 𝑼𝑼𝟐𝟐/µm 𝑼𝑼𝟒𝟒/µm 𝑼𝑼𝐀𝐀𝟐𝟐/µm 
(𝒃𝒃𝟏𝟏 = 0.577) 

𝑼𝑼𝐀𝐀𝟐𝟐/µm 
(𝒃𝒃𝟐𝟐 = 0.459) 

5 8.76 9.20 8.20 9.42 7.49 
10 8.84 9.73 8.04 9.95 7.91 
15 12.82 13.66 12.07 10.77 8.56 
20 14.85 16.50 13.78 11.83 9.40 
25 14.35 15.79 13.28 13.06 10.39 
30 13.73 14.70 13.30 14.43 11.47 
35 15.20 17.82 13.94 15.89 12.64 
40 18.27 20.14 16.97 17.43 13.86 
45 16.89 19.63 15.41 19.02 15.12 
50 18.68 22.79 16.89 20.66 16.42 
55 17.81 21.17 16.27 22.32 17.75 

 
Figure II-13: Plot of the values in Table II-8 (𝑙𝑙A = 25 mm). The horizontal axis is the distance 
of the right section to the datum feature, 𝑑𝑑 (millimetres). The vertical axis is the expanded 
uncertainty (micrometres). 
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Table II-9: Comparison of uncertainties. Length of the datum feature, 𝑙𝑙A = 30 mm. 

𝒅𝒅/mm 𝑼𝑼𝟏𝟏/µm 𝑼𝑼𝟐𝟐/µm 𝑼𝑼𝟒𝟒/µm 𝑼𝑼𝐀𝐀𝟐𝟐/µm 
(𝒃𝒃𝟏𝟏 = 0.577) 

𝑼𝑼𝐀𝐀𝟐𝟐/µm 
(𝒃𝒃𝟐𝟐 = 0.459) 

5 7.73 8.09 7.19 9.37 7.45 
10 13.05 13.03 12.83 9.74 7.74 
15 13.03 13.39 12.06 10.33 8.21 
20 12.13 12.53 11.21 11.10 8.83 
25 12.36 13.00 11.54 12.02 9.56 
30 12.90 13.52 14.01 13.06 10.39 
35 15.90 16.06 14.77 14.19 11.28 
40 12.50 13.36 11.60 15.40 12.24 
45 14.31 14.79 13.51 16.65 13.24 
50 14.47 15.44 13.46 17.95 14.27 

 
Figure II-14: Plot of the values in Table II-9 (𝑙𝑙A = 30 mm). The horizontal axis is the distance 
of the right section to the datum feature, 𝑑𝑑 (millimetres). The vertical axis is the expanded 
uncertainty (micrometres). 
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Table II-10: Comparison of uncertainties. Length of the datum feature, 𝑙𝑙A = 35 mm. 

𝒅𝒅/mm 𝑼𝑼𝟏𝟏/µm 𝑼𝑼𝟐𝟐/µm 𝑼𝑼𝟒𝟒/µm 𝑼𝑼𝐀𝐀𝟐𝟐/µm 
(𝒃𝒃𝟏𝟏 = 0.577) 

𝑼𝑼𝐀𝐀𝟐𝟐/µm 
(𝒃𝒃𝟐𝟐 = 0.459) 

5 12.77 13.73 11.84 9.33 7.42 
10 15.00 14.92 13.92 9.61 7.64 
15 13.65 13.46 12.67 10.05 7.99 
20 11.73 12.93 10.87 10.64 8.46 
25 14.37 15.16 13.60 11.35 9.03 
30 14.94 16.14 13.96 12.17 9.67 
35 14.20 14.78 13.39 13.06 10.39 
40 16.00 17.09 14.89 14.03 11.15 
45 14.78 15.05 14.08 15.05 11.96 

 
Figure II-15: Plot of the values in Table II-10 (𝑙𝑙A = 35 mm). The horizontal axis is the distance 
of the right section to the datum feature, 𝑑𝑑 (millimetres). The vertical axis is the expanded 
uncertainty (micrometres). 
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Table II-11: Comparison of uncertainties. Common datum A-B, 𝑙𝑙A−B = 80 mm. 

𝒅𝒅/mm 𝑼𝑼𝟏𝟏/µm 𝑼𝑼𝟐𝟐/µm 𝑼𝑼𝟒𝟒/µm 𝑼𝑼𝐀𝐀𝟐𝟐/µm 
(𝒃𝒃𝟏𝟏 = 0.577) 

𝑼𝑼𝐀𝐀𝟐𝟐/µm 
(𝒃𝒃𝟐𝟐 = 0.459) 

5 8.06 7.93 8.30 9.26 7.36 
10 5.53 6.05 4.80 9.31 7.40 
15 6.05 6.75 5.34 9.40 7.47 
20 6.02 6.25 5.42 9.52 7.57 
25 6.20 6.88 5.43 9.68 7.69 
30 5.96 6.08 5.39 9.87 7.84 
35 6.87 6.83 6.41 10.08 8.02 
40 11.28 11.42 10.51 10.33 8.21 
45 11.79 11.37 10.86 10.08 8.02 
50 10.45 9.80 9.55 9.87 7.84 
55 8.06 8.59 7.39 9.68 7.69 
60 8.92 9.50 8.17 9.52 7.57 
65 8.35 8.82 7.73 9.40 7.47 
70 7.00 7.24 6.35 9.31 7.40 
75 6.62 7.11 5.94 9.26 7.36 

 
Figure II-16: Plot of the values in Table II-11 (𝑙𝑙A−B = 80 mm). The horizontal axis is the 
longitudinal coordinate of the right section, ℎ (millimetres). The vertical axis is the expanded 
uncertainty (micrometres). 
The results show a strong dependence of the uncertainty on the datum feature length and on 
the distance of the section to the datum element. They also show a good compatibility of the 
proposed method B2 with the established experimental method [10]. 
The plots above use different scale magnifications. To help comparing,  Figure II-17 merges 
them to one chart (for the case only of the method B2 uncertainty with 𝑏𝑏1 = 0.58. 
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Figure II-17: Summary of the uncertainty evaluated with the method B2 in the case of a uniform 
distribution (𝑏𝑏1 = 0.58). Each curve illustrates a different datum feature length: the uppermost 
curve (in blue) is evaluated with 𝑙𝑙A = 10 mm, the others below with progressively longer lengths 
up to 𝑙𝑙A = 35 mm for the bottommost but one (in green). The bottommost in dark blue is with 
the common datum A-B. The horizontal axis is the distance of the section to the datum feature, 
𝑑𝑑 (millimetres), but for the bottommost curve is the longitudinal coordinate of the right section, 
ℎ (millimetres). The vertical axis is the expanded uncertainty (micrometres).  

II-5.3 Diameter of an external circle 

II-5.3.1 Validation plan 
The same cylindrical square used for validating the coaxiality (see II-5.2) was used for 
validating the external diameter too. 
The validation plan was the same as described in II-5.1 for the coaxiality but adapted as 
follows: 

• No datum was involved because the diameter is a feature of size; 
• The measurements of all the 17 right sections of the cylinder were individually 

considered and their diameters were evaluated; 
• The experimental uncertainty 𝑈𝑈4 was not evaluated. The measurement errors of a 

dimeter (characteristic of size) can be either positive or negative, and the approach 
based on the quantile of a one-sided distribution was not fit for purpose. 

II-5.4 Results 
The uncertainties evaluated experimentally (either 𝑈𝑈1 or 𝑈𝑈2) and with the method B2 (with 
either the value 𝑏𝑏1 = 0.577 or 𝑏𝑏2 = 0.459 of the coefficient 𝑏𝑏) are reported in Table II-12. 
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The chi-squared analysis of the experimental uncertainty 𝑈𝑈1 and 𝑈𝑈2 versus the uncertainty 
evaluated with method B2 (with either 𝑏𝑏1 or 𝑏𝑏2) is reported in Table II-13. 

Table II-12: External diameter. Synopsis of the uncertainties evaluated for the chi-squared 
analysis.  

 Uncertainties/µm 

Experimental 𝑈𝑈1 →  (6.30 – 8.54) 𝑈𝑈2 →  (6.07 – 7.68) 

Method B2 𝑏𝑏1 →  7.49 𝑏𝑏2 →  5.95 

Table II-13: External diameter. Chi-squared analysis of the experimental uncertainty 𝑈𝑈1 and 
𝑈𝑈1 versus the method B2 uncertainty (with either 𝑏𝑏1 for a uniform distribution or the 
CMM-specific 𝑏𝑏2). The values of 𝜒𝜒2 are colour-coded (Table II-3). 

𝑑𝑑/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈1/µm 𝜒𝜒12 

(𝑏𝑏1 = 0.58) 
𝜒𝜒22 

(𝑏𝑏2 = 0.46) 𝑈𝑈2/µm 𝜒𝜒12 
(𝑏𝑏1 = 0.58) 

𝜒𝜒22 
(𝑏𝑏2 = 0.46) 

0 0.69 2.80 6.78 16.43 26.00 6.25 13.94 22.05 
5 1.27 2.97 7.67 21.02 33.25 6.89 16.94 26.80 

10 0.22 3.28 7.22 18.58 29.40 7.00 17.52 27.71 
15 0.56 3.12 7.25 18.76 29.68 6.78 16.42 25.98 
20 0.52 3.10 7.18 18.39 29.09 6.74 16.21 25.64 
25 0.71 2.90 6.98 17.39 27.51 6.43 14.75 23.34 
30 0.25 2.84 6.42 14.72 23.29 6.19 13.67 21.63 
35 0.18 2.81 6.30 14.15 22.39 6.13 13.40 21.20 
40 0.10 3.31 7.13 18.14 28.70 7.04 17.67 27.96 
45 0.15 2.99 6.59 15.50 24.53 6.45 14.86 23.51 
50 0.44 2.75 6.44 14.81 23.44 6.07 13.13 20.78 
55 0.22 3.24 7.13 18.14 28.71 6.92 17.09 27.04 
60 -0.55 3.26 7.49 20.00 31.65 7.03 17.62 27.88 
65 -0.90 2.92 7.22 18.62 29.45 6.57 15.42 24.40 
70 -1.57 2.84 7.74 21.37 33.80 6.92 17.09 27.05 
75 -1.37 3.38 8.54 26.05 41.22 7.68 21.05 33.31 
80 -1.47 3.01 7.95 22.56 35.69 7.11 18.07 28.59 

The test chi-squared test was always passed with either experimental uncertainty 𝑈𝑈1,𝑈𝑈2 in the 
(2 × 17) cases with uniform distribution assumption (𝑏𝑏1). It was too in 13 (𝑈𝑈1) and 16 (𝑈𝑈2) out 
of 17 cases based actual reverification test results (𝑏𝑏2). This is considered a satisfactory result, 
particularly in the case of 𝑈𝑈2, likely more reliable than 𝑈𝑈1. 

II-5.5 Diameter of an internal circle 

II-5.5.1 Validation plan 
Two ring gauges (100 mm and 45 mm in diameter) were measured with three different CMMs, 
according to the experimental plan in Table II-14. 



EUCoM D2 Report: A Priori (type B) evaluation  11/2021 

- II-27 - 

Table II-14: Experimental plan for the validation of the diameter of an internal circle. 

CMM EL,MPE/µm 
(L in millimetres) 

Ring gauge 1 
(ø 100 mm) 

Ring gauge 2 
(ø 45 mm) 

1 1.8 + L/300   

2 1.5 + L/333   

3 1.8 + L/333   

 

II-5.5.2 Results 
Details of the uncertainty evaluation are reported in Table II-15. The uncertainties were 
evaluated experimentally with either 𝑈𝑈1 or 𝑈𝑈2 and with the method B2 with either the value 𝑏𝑏1 = 
0.577 (uniform distribution) or 𝑏𝑏2 (for the specific CMM) of the coefficient 𝑏𝑏. 
The chi-squared analysis is summarised in Table II-16. Values are colour-coded, see Table 
II-3. 
Table II-15: Internal diameter. Details of the uncertainty evaluations: experimentally (with 
either 𝑈𝑈1 or 𝑈𝑈2) and with the method B2 (with either 𝑏𝑏1 for a uniform distribution or 𝑏𝑏2 for the 
specific CMM). 

CMM Ring 
∅/mm 

𝑢𝑢cal 
/µm 

Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑏𝑏1 𝑏𝑏2 

𝑈𝑈1 
/µm 

𝑈𝑈2 
/µm 

𝑈𝑈B2 
/µm 
(𝑏𝑏1) 

𝑈𝑈B2 
/µm 
(𝑏𝑏2) 

1 100 0.5 0.29 0.17 0.577 0.228 1.35 1.21 3.52 1.39 
2 45 0.7 0.05 0.56 0.577 0.249 1.84 1.80 2.75 1.19 
3 45 0.7 -0.18 0.63 0.577 0.232 2.05 1.91 3.27 1.31 

 
Table II-16: Internal diameter. Chi-squared analysis of the experimental uncertainty 𝑈𝑈1 and 𝑈𝑈2 
versus the method B2 uncertainty (with either 𝑏𝑏1 for a uniform distribution or 𝑏𝑏2 for the specific 
CMM). 

CMM 
𝑈𝑈1 𝑈𝑈2 

𝜒𝜒12 
(𝑏𝑏1) 

𝜒𝜒22 
(𝑏𝑏2) 

𝜒𝜒12 
(𝑏𝑏1) 

𝜒𝜒22 
(𝑏𝑏2) 

1 2.96 18.93 2.37 15.17 
2 8.94 47.74 8.53 45.55 
3 7.90 49.21 6.84 42.62 

 
The large discrepancy between the two uncertainties with method B2 is due to the coefficient   
𝑏𝑏2 less than a half of 𝑏𝑏1. This occurred because the CMMs were in very good technical 
condition and performed in the EN ISO 10360-2 verification tests much better than their MPEs 
(Figure II-18). 
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Figure II-18: Diagram of the errors of indication incurred in the EN ISO 10360-2 verification 
test of the CMM 1. The external red lines are the MPE. The internal blue lines symmetrically 
encompass 95 % of the errors and were used for the derivation of the coefficient 𝑏𝑏2. 
For the CMM 1, the method B2 uncertainties were compatible with the experimental ones, with 
some overestimation versus 𝑈𝑈1. 
For the CMMs 2 and 3, the order relationship 𝑈𝑈B2,𝑏𝑏2 < 𝑈𝑈2 < 𝑈𝑈1 < 𝑈𝑈B2,𝑏𝑏1 could be observed. 
The method B2 uncertainties generally either overestimated (while using the MPE values, 𝑏𝑏1) 
or underestimated (while using the actual test values, 𝑏𝑏1) the uncertainty evaluated 
experimentally [10]. 

It is worth noticing that the value of 𝑢𝑢cal was rather large and accounted for a large fraction 
(>50 %) of the uncertainty evaluated experimentally. 

II-5.6 Diameter of the arc of a circle 
Two validation exercises were carried out: on single arcs and on the average of multiple arcs 
rotated all along the circle. 

II-5.6.1 Validation plan (single arcs) 
The same ring gauges were measured with the same CMMs as for the validation of the internal 
diameter (Table II-14). Arcs with different central angles 2𝜃𝜃 were measured. 

II-5.6.2 Results (single arcs) 
The results (both the uncertainties and the chi-squared values) are reported in Table II-17,  
Table II-18 and Table II-19 for the three CMMs. 
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Table II-17: Arc of a circle.  Details of the experimental (with either 𝑈𝑈1 or 𝑈𝑈2) and the method B2 
(with either 𝑏𝑏1 for a uniform distribution or 𝑏𝑏2 for the specific CMM) uncertainties, and 
chi-squared analysis. 𝜃𝜃 is half the central angle. Case of the CMM 1 and the 100 mm ring 
gauge. 

CMM 1: EL,MPE = (1.8 + L/300) µm 100 mm ring gauge; 𝑢𝑢cal = 0.5 µm 

Half 
centr. 
angle, 
𝜃𝜃 

Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 

𝑈𝑈1 
/µm 

𝑈𝑈2 
/µm 

𝑈𝑈B2 
/µm 
(𝑏𝑏1) 

𝑈𝑈B2 
/µm 
(𝑏𝑏2) 

𝑈𝑈1 𝑈𝑈2 

𝜒𝜒12 
(𝑏𝑏1) 

𝜒𝜒22 
(𝑏𝑏2) 

𝜒𝜒12 
(𝑏𝑏1) 

𝜒𝜒22 
(𝑏𝑏2) 

17° 5.37 1.64 8.79 11.26 65.77 25.99 0.36 2.29 0.59 3.76 
25° -3.02 0.89 5.05 6.37 29.89 11.81 0.57 3.66 0.91 5.81 
40° 0.20 0.43 1.52 1.38 11.12 4.39 0.37 2.40 0.31 1.97 
90° 0.25 0.21 1.33 1.19 2.46 0.97 5.84 37.37 4.68 29.94 

 
Table II-18: Arc of a circle.  Details of the experimental (with either 𝑈𝑈1 or 𝑈𝑈2) and the method B2 
(with either 𝑏𝑏1 for a uniform distribution or 𝑏𝑏2 for the specific CMM) uncertainties, and 
chi-squared analysis. 𝜃𝜃 is half the central angle. Case of the CMM 2 and the 45 mm ring gauge. 

CMM 2: EL,MPE = (1.5 + L/333) µm 45 mm ring gauge; 𝑢𝑢cal = 0.7 µm 

Half 
centr. 
angle, 
𝜃𝜃 

Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 

𝑈𝑈1 
/µm 

𝑈𝑈2 
/µm 

𝑈𝑈B2 
/µm 
(𝑏𝑏1) 

𝑈𝑈B2 
/µm 
(𝑏𝑏2) 

𝑈𝑈1 𝑈𝑈2 

𝜒𝜒12 
(𝑏𝑏1) 

𝜒𝜒22 
(𝑏𝑏2) 

𝜒𝜒12 
(𝑏𝑏1) 

𝜒𝜒22 
(𝑏𝑏2) 

17° -2.29 1.89 6.31 6.09 54.66 23.55 0.27 1.43 0.25 1.34 
25° -1.60 1.60 5.09 4.73 24.76 10.67 0.84 4.55 0.73 3.93 
40° -0.84 1.26 3.71 3.33 9.10 3.92 3.33 17.93 2.67 14.40 
90° -0.59 0.46 2.26 2.04 1.89 0.81 28.52 155.3 23.31 126.9 

 

Table II-19: Arc of a circle.  Details of the experimental (with either 𝑈𝑈1 or 𝑈𝑈2) and the method B2 
(with either 𝑏𝑏1 for a uniform distribution or 𝑏𝑏2 for the specific CMM) uncertainties, and 
chi-squared analysis. 𝜃𝜃 is half the central angle. Case of the CMM 3 and the 45 mm ring gauge. 

CMM 3: EL,MPE = (1.8 + L/333) µm 45 mm ring gauge; 𝑢𝑢cal = 0.7 µm 

Half 
centr. 
angle, 
𝜃𝜃 

Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 

𝑈𝑈1 
/µm 

𝑈𝑈2 
/µm 

𝑈𝑈B2 
/µm 
(𝑏𝑏1) 

𝑈𝑈B2 
/µm 
(𝑏𝑏2) 

𝑈𝑈1 𝑈𝑈2 

𝜒𝜒12 
(𝑏𝑏1) 

𝜒𝜒22 
(𝑏𝑏2) 

𝜒𝜒12 
(𝑏𝑏1) 

𝜒𝜒22 
(𝑏𝑏2) 

17° 1.70 1.33 4.69 4.53 65.57 26.32 0.10 0.64 0.10 0.59 
25° 0.50 1.25 3.36 3.03 29.68 11.92 0.26 1.59 0.21 1.29 
40° 0.17 1.03 2.66 2.51 10.89 4.37 1.19 7.39 1.06 6.59 
90° 0.31 0.61 2.17 1.96 2.23 0.90 18.86 115.8 15.42 94.64 

 
The method B2 generally overestimated the uncertainty, particularly at small central angles. In 
the case of the semicircle (𝜃𝜃 = 90°), the use of the validation-based coefficient 𝑏𝑏2 led to a 
severe overestimation. 
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II-5.6.3 Validation plan (average of multiple arcs) 
The ring gauge 100 mm was measured with a CMM with MPE EL, MPE = ±(1.8 + L/333) µm (L 
in millimetres). 

Eleven evenly spaced points where probed (∆𝜃𝜃 = 360°
11

≈ 32.7° angular separation). Sets of 
three points were extracted out of the eleven and the diameter of the circle through them was 
evaluated. The selection of the three points followed a scheme aimed at investigating the effect 
of the central angle size with the impact of local form errors minimised by averaging (see Figure 
II-19). More precisely: 

1. Increasing central angles 2𝜃𝜃𝑘𝑘 = 𝑘𝑘∆𝜃𝜃 were considered. The minimum and maximum 
values of  𝑘𝑘 were selected to have at least three sampled points onto the subtending 
arc with non-coincident extreme points, that is, 𝑘𝑘 ∈ [2,10]. In fact, 𝑘𝑘 = 1 would have 
resulted in two points only, 𝑘𝑘 = 11 in coincident extreme points. The corresponding 9 
values of half central angles were 𝜃𝜃𝑘𝑘 = (32.7°, 49.1°, 65.5°, 81.8°, 98.2°, 114.5°, 
130.9°, 147.3°, 163.6°). 

2. For each central angle 2𝜃𝜃𝑘𝑘, a set of three points was taken at the extremes and at the 
middle point of the subtending arc, the first point of the three being 1. This corresponded 
to the points �1, 𝑘𝑘

2
+ 1, 𝑘𝑘 + 1� 10F

11. For instance {1, 2, 3} for 𝑘𝑘 = 2 (Figure II-19a), or 
{1, 2, 4} for 𝑘𝑘 = 3, or {1, 6, 11} for 𝑘𝑘 = 11 (Figure II-19b). 

3. Each set is progressively rotated about the centre in steps of ∆𝜃𝜃, resulting in 11 sets 
(𝑗𝑗 ∈ [1,11]) for each central angle (𝑘𝑘 ∈ [2,10]). The points in the sets resulted to be 
�𝑗𝑗, �𝑘𝑘

2
+ 𝑗𝑗� , (𝑘𝑘 + 𝑗𝑗) �, with point indexes “wrapping around”12 at the value of 12. The 

sequence resulted in 
𝑗𝑗 = 1 𝑗𝑗 = 2 ⋯ 𝑗𝑗 = 11

𝑘𝑘 = 2 {1,  2,  3} {2,  3,  4} ⋯ {11,  1,  2}
𝑘𝑘 = 3 {1,  2,  4} {2,  3,  5} ⋯ {11,  1,  3}
⋮ ⋮ ⋮ ⋯ ⋮

𝑘𝑘 = 10 {1,  6,  11} {2,  7,  1} ⋯ {11,  5,  10}

 

4. The 11 diameters computed for each central angle size were averaged to obtain ∅�𝑘𝑘. 

                                                 
11 This is valid when 𝑘𝑘 is even. When it is odd instead, the nearby point 𝑘𝑘−1

2
+ 1 rather than 𝑘𝑘

2
+ 1 is 

chosen as middle point point, resulting in �1, 𝑘𝑘−1

2
+ 1, 𝑘𝑘 + 1� 

12 Indexes “wrap around” because of the point layout closed in a circle. The complete expression is 
�𝑗𝑗, ��𝑘𝑘

2
+ 𝑗𝑗 − 1�  mod 11� + 1, [(𝑘𝑘 + 𝑗𝑗 − 1) mod 11] +  1�  for even values of 𝑘𝑘 

�𝑗𝑗, ��𝑘𝑘−1
2

+ 𝑗𝑗 − 1�  mod 11� + 1, [(𝑘𝑘 + 𝑗𝑗 − 1) mod 11] +  1� for odd values of 𝑘𝑘. 
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5.  
Figure II-19: Sampling of a circle used for the validation for arcs of circles. Examples of sets 
of extracted three points. Central angles 2𝜃𝜃: a) 𝜃𝜃 = 32.7°, b) 𝜃𝜃 = 163.6°. 
 
Each experiment was repeated 20 times with measurements taken at long time intervals [10]. 

II-5.6.4 Results (average of multiple arcs) 
Figure II-20 plots the evaluated uncertainties as a function of half the central angle 𝜃𝜃. 

  
Figure II-20: Expanded measurement uncertainties of the diameter of a circle arc. The 
horizontal axis is half the central angle 𝜃𝜃 (degrees). The vertical axis is the evaluated expanded 
uncertainty (micrometres). Dots are the uncertainty evaluated experimentally [10]. Solid lines 
are uncertainties evaluated with the method B2: with 𝑏𝑏1 = 0.577 for a uniform distribution 
(grey) and with 𝑏𝑏2 = 0.313 based on actual CMM verification data. 

A clear overestimation of method B2 uncertainty is observable for small central angles 2𝜃𝜃. 

II-5.7 Inter-method comparison 

II-5.7.1 Validation plan 
The method B2 evaluations were compared with those with the method A also developed in 
the EUCoM project [11]. 
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Three artefacts were investigated, namely an industrial connecting rod and two MFC standards 
(Multi-Feature Check) of high and low quality, respectively (Figure II-21). Details of these 
artefacts are given in [12]. 
 

 

       
Figure II-21: Artefacts used for the inter-method comparison. An industrial connecting rod (top) 
and two MTC standards (Multi-feature Checks, bottom; one only is illustrated). 
 

II-5.7.2 Connecting rod 
Many characteristics could be defined in the geometry of a connecting rod. Six only were 
selected to keep the analysis effort viable. 
To define the characteristics (measurands), a primary datum was established on the upper 
planar face of the big eye. This datum was parallel-shifted into the connecting rod to its nominal 
symmetry plane. Its intersections with the big and small eyes were nominally two circles (C3 
and C4). The selected characteristics are reported in Table II-20. 
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Table II-20: Inter-method comparison – connecting rod. Definition of the measurands. 

Symbol Description More precisely … 

∅C3 Diameter of the big eye Diameter of C3 

∅C4 Diameter of the small eye Diameter of C4 

𝑑𝑑34 Separation of the axes of the two eyes Separation of the centres of C3 and 
C4 

𝑝𝑝BS Parallelism of the axes of the two eyes  

∅Big Diameter of the big eye Diameter of the cylinder associated to 
the big eye 

∅Small Diameter of the small eye Diameter of the cylinder associated to 
the small eye 

 
The expanded uncertainties evaluated with the methods A and B2 were compared. The latter 
was evaluated with 𝑏𝑏1 = 0.577 for a uniform distribution and 𝑏𝑏2 based on actual CMM 
verification data [2]. Usually 𝑏𝑏2 ≤ 𝑏𝑏1, as all the involved CMMs were well-behaved. 
The connecting rod was measured with 10 different CMMs. To keep the effort viable, the 
chi-squared analysis was carried out only for the four highest-accuracy CMMs. 
The evaluation with the method A was based on four repeats of measurements of the 
connecting rod each in four orientations, resulting in 16 sets of data overall. Hence, the degrees 
of freedom were 15 in the chi-squared analysis (Table II-21). 
Table II-21: Inter-method comparison – connecting rod. Critical values for the chi-squared 
analysis. 

Null hypothesis criterion Thresholds 

𝜒𝜒cr12 ≤ 𝜒𝜒2 ≤ 𝜒𝜒cr22  𝜒𝜒cr12 (0.025, 15) = 6.262 𝜒𝜒cr22 (0.975, 15) = 27.488 

 
The resulting uncertainties and chi-squared analysis are reported in Table II-22 and Table 
II-23, respectively. 
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Table II-22: Inter-method comparison – connecting rod. Uncertainties evaluated with the 
method A (𝑈𝑈A) and B2. The latter uncertainties were evaluated with 𝑏𝑏1 = 0.577 for a uniform 
distribution �𝑈𝑈B2,𝑏𝑏1� and with 𝑏𝑏2 based on actual CMM verification data [2] �𝑈𝑈B2,𝑏𝑏2�. See Table 
II-20 for the meaning of the symbols in the column headers (measurands). 

CMM  ∅C3 ∅C4 𝑑𝑑34 𝑝𝑝BS ∅Big ∅Small 

1 
(𝑏𝑏2 = 0.40) 

𝑈𝑈B2,𝑏𝑏1 1.37 1.27 1.22 1.15 1.37 1.27 
𝑈𝑈B2,𝑏𝑏2 0.94 0.88 0.84 0.79 0.94 0.88 
𝑈𝑈A 0.52 0.49 0.59 0.79 0.85 0.67 

7 
(𝑏𝑏2 = 0.30) 

 5.44 5.28 4.13 4.92 5.44 5.28 
𝑈𝑈B2,𝑏𝑏2 2.81 2.73 2.14 2.55 2.81 2.73 
𝑈𝑈A 2.34 2.52 2.20 2.73 2.59 3.25 

10 
(𝑏𝑏2 = 0.33) 

𝑈𝑈B2,𝑏𝑏1 1.54 1.44 1.33 1.31 1.54 1.44 
𝑈𝑈B2,𝑏𝑏2 0.88 0.82 0.76 0.75 0.88 0.82 
𝑈𝑈A 0.87 0.88 0.93 0.93 0.90 0.88 

11 
(𝑏𝑏2 = 0.47) 

𝑈𝑈B2,𝑏𝑏1 4.88 4.75 3.67 4.43 4.88 4.75 
𝑈𝑈B2,𝑏𝑏2 3.95 3.85 2.98 3.59 3.95 3.85 
𝑈𝑈A 2.82 2.80 2.96 2.84 2.84 2.85 

  All values in micrometres 

Table II-23: Inter-method comparison – connecting rod. Chi-squared values evaluated from 
the uncertainties reported in Table II-22. Values are colour-coded (Table II-3). 

CMM Comparison ∅C3 ∅C4 𝑑𝑑34 𝑝𝑝BS ∅Big ∅Small 

1 
𝑈𝑈A vs 𝑈𝑈B2,𝑏𝑏1 2.29 2.36 3.78 7.58 6.11 4.40 
𝑈𝑈A vs 𝑈𝑈B2,𝑏𝑏2 4.82 4.96 7.95 15.94 12.84 9.26 

7 
𝑈𝑈A vs 𝑈𝑈B2,𝑏𝑏1 2.95 3.64 4.56 4.93 3.62 6.04 
𝑈𝑈A vs 𝑈𝑈B2,𝑏𝑏2 11.04 13.60 17.03 18.42 13.54 22.58 

10 
𝑈𝑈A vs 𝑈𝑈B2,𝑏𝑏1 5.14 5.97 7.77 7.95 5.40 5.96 
𝑈𝑈A vs 𝑈𝑈B2,𝑏𝑏2 15.89 18.44 23.99 24.57 16.67 18.41 

11 
𝑈𝑈A vs 𝑈𝑈B2,𝑏𝑏1 5.33 5.58 10.39 6.56 5.40 5.76 
𝑈𝑈A vs 𝑈𝑈B2,𝑏𝑏2 8.12 8.49 15.82 9.99 8.22 8.77 

 
The chi-squared analysis results were very good for all four CMMs. The method B2 uncertainty 
based on actual CMM validation data, 𝑈𝑈B2,𝑏𝑏2, resulted compatible with the method A 
uncertainty in all cases but CMM 1 for two out of six measurands. The method B2 uncertainty 
based on MPEs, 𝑈𝑈B2,𝑏𝑏1, overestimated the uncertainty in most cases. No underestimation was 
observed. 

II-5.7.3 MFC standard (high quality) 
MFCs are designed to provide a variety of dimensional and geometrical characteristics, to 
provide a wide selection when testing CMM measuring capabilities. Twelve were considered 
in this exercise to keep the analysis effort viable. They are reported in Table II-24. 
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Table II-24: Inter-method comparison – MFC. Definition of the measurands. See Figure II-21. 
See [12] for more details. 

Symb. Nom. value 
/mm Description More precisely … 

∅A1 100 Diameter of the left external 
cylinder External diameter of A1 

∅C 50 Diameter of the left coaxial 
bore Internal diameter of C 

∅K 49,5 Diameter of the conical seat Internal diameter of the right 
section of K, 20 mm apart from E 

𝑙𝑙EF 200 Separation of the extreme 
ends 

Length of the portion of the MFC 
axis between the intersections with 
the planes E and F 

𝑙𝑙B1B5 75 Separation of diametrically 
opposed longitudinal bores 

2D separation of the middle points 
of the axes of bores B1 and B5 in a 
plane orthogonal to the MFC axis 

𝑠𝑠A1 - Straightness of a generatrix 
of the left portion  

Straightness of the generatrix of A 
closest to the bore B7. 

𝜈𝜈C - Runout of the left coaxial 
bore 

Runout of C with A1 taken as a 
datum 

𝜈𝜈t,C - Total runout of the left coaxial 
bore 

Total runout of C with A1 taken as 
a datum 

𝑐𝑐C−A1 - 
Concentricity of the left 
external and internal 
cylinders 

Concentricity of C with A1 taken as 
a datum 

𝑓𝑓E - Flatness of the left end Flatness of E 

𝑝𝑝E−F - Parallelism of the extreme 
ends 

Parallelism of F with E taken as a 
datum 

⊥E−C - 
Perpendicularity of the 
coaxial bore axis to the left 
end 

Perpendicularity of C with E taken 
as a datum 

 
The expanded uncertainties evaluated with the methods A and B2 were compared. The latter 
was evaluated with 𝑏𝑏1 = 0.577 for a uniform distribution. 
The MFC was measured with three different CMMs. However, the chi-squared analysis was 
carried out only for two. 
Similarly to the connecting rod, the degrees of freedom were 15 in the chi-squared analysis, 
resulting in the same critical values (Table II-21). 
The resulting uncertainties and chi-squared analysis are reported in Table II-25. 
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Table II-25: Inter-method comparison – high quality MFC. Uncertainties evaluated with the 
method A (𝑈𝑈A) and B2 with 𝑏𝑏1 = 0.577 for a uniform distribution �𝑈𝑈B2,𝑏𝑏1�. See Table II-24 for 
the meaning of the symbols in the row headers (measurands). The chi-squared values are 
colour-coded (Table II-3) with the thresholds given in Table II-21. 

Characteristic CMM 1 CMM 10 
𝑈𝑈A 𝑈𝑈B2,𝑏𝑏1 𝜒𝜒2 𝑈𝑈A 𝑈𝑈B2,𝑏𝑏1 𝜒𝜒2 

∅A1 0.67 1.19 5.11 0.96 1.22 9.98 
∅C 0.64 1.11 5.31 0.75 1.13 7.09 
∅K 0.63 1.11 5.15 2.79 1.13 98.39 
𝑙𝑙EF 0.74 1.08 7.47 0.85 1.16 8.58 
𝑙𝑙B1B5 0.65 0.84 9.56 0.64 0.87 8.68 
𝑠𝑠A1 0.60 0.78 9.51 0.56 0.78 8.30 
𝜈𝜈C 0.65 0.74 12.20 0.65 0.75 11.78 
𝜈𝜈t,C 0.85 0.82 17.12 1.51 0.83 52.68 
𝑐𝑐C−A1 0.60 0.70 11.88 0.61 0.70 12.19 
𝑓𝑓E 0.60 0.77 9.72 0.68 0.77 12.55 
𝑝𝑝E−F 0.60 0.77 9.72 0.64 0.77 11.05 
⊥E−C 1.48 3.55 2.78 1.09 3.55 1.50 

 
The results shown in Table II-25 are good and satisfactory. Most evaluations were compatible 
with the method A, with a single case of underestimation and few overestimations. 

The underestimation occurred for ∅K, which is a diameter. The comparison among the three 
measured diameters (∅A1,∅C,∅K) shows that the uncertainty of ∅K is quite larger than that of 
the other two with the method A, while it is in line with them with the method  B2. A possible 
explanation is the following. ∅K was taken on a cone and the measurement was sensitive to 
the directional response of the probing system. The method A is sensitive to the probing effects 
while the method B2 is not. 

II-5.7.4 MFC standard (low quality) 
The same comparison described in II-5.7.3 was carried out with a lower quality MFC standard. 
Measurands (Table II-24) and procedure were the same. The MFC standard was measured 
by different CMMs and the two highest-accuracy CMMs were selected for the chi-squared 
analysis. 
The resulting uncertainties and chi-squared analysis are reported in Table II-26. 
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Table II-26: Inter-method comparison – low quality MFC. Uncertainties evaluated with the 
method A (𝑈𝑈A) and B2 with 𝑏𝑏1 = 0.577 for a uniform distribution �𝑈𝑈B2,𝑏𝑏1�. See Table II-24 for 
the meaning of the symbols in the row headers (measurands). The chi-squared values are 
colour-coded (Table II-3) with the thresholds given in Table II-21. 

Characteristic CMM 7 CMM 11 
𝑈𝑈A 𝑈𝑈B2,𝑏𝑏1 𝜒𝜒2 𝑈𝑈A 𝑈𝑈B2,𝑏𝑏1 𝜒𝜒2 

∅A1 1.37 2.89 3.57 2.91 4.96 5.49 
∅C 1.38 2.74 4.04 2.87 4.82 5.69 
∅K 1.53 2.74 5.01 3.09 4.81 6.58 
𝑙𝑙EF 1.59 2.51 6.44 4.05 3.91 17.24 
𝑙𝑙B1B5 1.36 2.03 7.16 3.15 3.42 13.59 
𝑠𝑠A1 1.37 1.95 7.98 2.94 3.50 11.25 
𝜈𝜈C 1.41 1.84 9.49 3.77 3.23 21.85 
𝜈𝜈t,C 1.41 2.03 7.75 3.77 3.59 17.69 
𝑐𝑐C−A1 1.40 1.74 10.42 3.77 3.13 23.16 
𝑓𝑓E 1.36 1.92 8.04 2.88 3.46 11.07 
𝑝𝑝E−F 1.36 1.92 8.03 2.90 4.30 7.24 
⊥E−C 1.44 8.87 0.42 2.90 3.46 11.19 

 
The results shown in Table II-26 are good and satisfactory. Most evaluations were compatible 
with the method A, with no underestimation and a few overestimations, of which that relative 
to the perpendicularity ⊥E−C is severe for the CMM 7. 
For both CMMs, better uncertainty estimation was achieved by taking the calibration rather 
that the method A values as reference13. The uncertainties of all characteristics were fully 
compatible with either CMM, apart from ⊥E−C, which remained overestimated significantly. 
The datum feature size was small compared to that of the toleranced feature (measurand), 
resulting in high sensitivity of the datum. A possible explanation of the severe overestimation 
is the following. The method A imposed that the sampling was always the same for all 
repetitions and orientations. This applied to the datum feature as well, which was likely probed 
always at the same points, resulting in a lack of sensitivity of the method A. 

II-6 Conclusions 
An a priori method based on prior information of the CMM performance according to 
EN ISO 10360-2 [2] and on the geometry of the measurand was developed and presented in 
this Section 2. This method is referred to as B2 to distinguish it from the a posteriori method A–
also developed in the EUCoM project but not part of this document [11]–and from the a priori 
method B1 dealt with in Section 1. 
The method is based on the sensitivity analysis of an essential set of representative points. 
Closed-form equations for paradigmatic elementary measurement tasks were derived and 
reported. They are easily implemented with non-specialist software such as spreadsheets and 
listed in table for documentation, including a possible future international standard. 
Extensive validation testing of the method B2 was performed. The tests were with several 
CMMs and the following artefacts: a cylinder square, a reference ring, an industrial connecting 
rod and two Multi-Feature-Check (MFC) standards. Uncertainties evaluated according either 

                                                 
13 The details are not reported here for brevity. 
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to the EN ISO 15530-3 [10] or to the Method A were compared with those evaluated with the 
method B2. The comparison was implemented through chi-squared testing. 
The method B2 proved to be mostly compatible with the EN ISO 15530-3. The results obtained 
for the cylindrical square are particularly interesting. The investigation of the coaxiality when 
varying the length (longitudinal size) of the datum feature and the distance to it of the 
toleranced feature confirms the expectation that the uncertainties of different characteristics 
measured with the same CMM may differ significantly. Also confirmed was the expectation that 
the uncertainty of the diameter of a circle arc increases when the subtended central angle 
decreases. For small central angles, the method B2 overestimates the uncertainty, just like 
other methods. 
The method B2 proved to be compatible with the method A too. Few cases were observed 
where overestimation occurred, with a single case of underestimation. They require further 
analysis. 
The main characteristics of the method B2 are summarised below. 

• The method takes data according to EN ISO 10360-2 testing as main input for the 
uncertainty evaluation; the data may be either the actual values incurred in testing or 
the MPEs. This information is likely available to any user of metrologically-confirmed 
CMMs. 

• The method considers an essential set of representative points only, as opposed to the 
possibly many in the sampling plan. The points may be on either integral features 
(surface points) or derived features (such as axes, datums and sphere centres), the 
latter being in fact localisation points of features. The noise compression due to the 
redundancy of the many more sampling points does not take place in the method B2, 
leading to possible overestimation. This is acceptable, or even recommended, in view 
of the associated cost reduction or time shortening. 

• The method is able to link the prior information on the CMM performance in size 
measurements [2] to that for any other dimensional or geometrical characteristic. 

• The method currently disregards the effects due to the workpiece itself, such as the 
form error, but in principle it could be adapted to account for it too. 

• Over twenty different cases of elementary characteristics were investigated. For each, 
the essential set of points and the closed-form sensitivity equations were given. 

• The software validation procedure described in ISO/TS 15530-4 [13] and the 
suggestion therein to use a cylindrical square proved adequate for validating the 
method B2. However, the uncertainty comparison was carried through chi-squared 
analysis rather than the normalised error EN. 

• Experience in applying the method B2 to diverse geometric characteristics show that 
most uncertainty values fall within the range [0.8 – 2] of the A coefficient in the 
expression of the MPE (EL,MPE = A + L/B). Exceptions were the coaxiality when a short 
datum feature is well separated from the toleranced feature, and the radius of the circle 
arc subtending a small central angle. In these cases, the uncertainty may be 
significantly larger. 

• The expected B2 uncertainty’s independence of the workpiece orientation in the CMM 
volume was confirmed. Any orientation can be assumed for the calculations, whichever 
is simplest. A good candidate is according to the drawing or CAD model. 

• When applying the method to different CMMs–as long as the measurands remain the 
same–or when the 𝑏𝑏 coefficient (to derive the uncertainty from the EN ISO 10360-2 
data) is updated (e.g., to apply a different assumption on the error distribution), no re-
evaluation of the partial derivatives is needed and the conversion can be done easily 
in a spreadsheet. 

• Very importantly, this document did not consider all possible variants in deriving the 
measurand from an essential set of points. This applies particularly to deriving a normal 
vector to a plane through 3 points (A, B, C). This is evaluated as the cross product of 
two vectors having extremes in a combination of the three points, resulting in 𝐀𝐀𝐀𝐀 × 𝐀𝐀𝐀𝐀 
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or 𝐀𝐀𝐀𝐀 × 𝐀𝐀𝐀𝐀 or 𝐀𝐀𝐀𝐀 × 𝐀𝐀𝐀𝐀. The sensitivity equations are not the same for each option. To 
choose one properly, all three ought to be evaluated and that resulting in the smallest 
uncertainty chosen. This explains, e.g., the sharp change of slope in the graph of the 
uncertainty of a circle arc diameter in Figure II-1 at s = 74 mm. The method, despite 
its simplicity, cannot be used effectively without suitable software. 
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Annex II-A Details of the chi-squared analysis of the cylinder 
square 
The following tables are clustered in groups of three. Each group is about a different length of 
the datum feature, but the last group is about the common datum A-B. The three tables in each 
group report the analysis of 𝑈𝑈1,𝑈𝑈2,𝑈𝑈4, respectively, versus the uncertainty evaluated with the 
method B2. 

The 𝜒𝜒2 values are reported in the last two columns of each table, derived for the values 𝑏𝑏1 and 
𝑏𝑏2, respectively, of the coefficient 𝑏𝑏. 

The values of 𝜒𝜒2 are colour-coded (Table II-3). 

Length of the datum feature, 𝒍𝒍𝐀𝐀 = 10 mm 

Table II-27: Chi-squared analysis with the experimental uncertainty 𝑈𝑈1. Length of the datum 
feature, 𝑙𝑙A = 10 mm. 

𝑑𝑑/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈1/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 4.26 1.99 8.71 10.3 8.2 14.23 22.52 
10 4.84 2.76 10.71 13.1 10.4 13.45 21.29 
15 5.99 2.39 11.16 16.7 13.2 8.99 14.22 
20 8.08 3.62 15.59 20.7 16.4 11.39 18.03 
25 8.39 3.47 15.60 24.9 19.8 7.87 12.45 
30 11.63 5.19 22.20 29.2 23.2 11.55 18.28 
35 13.33 5.28 24.07 33.6 26.7 10.25 16.22 
40 13.78 6.27 26.48 38.1 30.3 9.67 15.29 
45 14.79 5.42 25.82 42.6 33.9 7.35 11.63 
50 16.99 6.73 30.60 47.1 37.4 8.44 13.36 
55 18.59 6.92 32.58 51.6 41.1 7.96 12.59 
60 18.76 7.27 33.45 56.2 44.7 7.09 11.21 
65 21.33 7.87 37.20 60.8 48.3 7.50 11.86 
70 21.29 8.27 37.95 65.3 51.9 6.75 10.68 
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Table II-28: Chi-squared analysis with the experimental uncertainty 𝑈𝑈2. Length of the datum 
feature, 𝑙𝑙A = 10 mm. 

𝑑𝑑/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈2/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 4.26 1.99 9.62 10.33 8.21 17.35 27.45 
10 4.84 2.76 11.32 13.06 10.39 15.01 23.75 
15 5.99 2.39 13.04 16.65 13.24 12.27 19.41 
20 8.08 3.62 17.81 20.66 16.42 14.88 23.54 
25 8.39 3.47 18.26 24.87 19.77 10.78 17.06 
30 11.63 5.19 25.54 29.21 23.22 15.29 24.19 
35 13.33 5.28 28.74 33.63 26.73 14.61 23.12 
40 13.78 6.27 30.34 38.09 30.28 12.69 20.08 
45 14.79 5.42 31.57 42.58 33.85 10.99 17.40 
50 16.99 6.73 36.60 47.10 37.45 12.08 19.11 
55 18.59 6.92 39.72 51.64 41.05 11.83 18.72 
60 18.76 7.27 40.30 56.19 44.67 10.29 16.28 
65 21.33 7.87 45.52 60.75 48.30 11.23 17.77 
70 21.29 8.27 45.73 65.32 51.93 9.80 15.51 

Table II-29: Chi-squared analysis with the experimental uncertainty 𝑈𝑈4. Length of the datum 
feature, 𝑙𝑙A = 10 mm. 

𝑑𝑑/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈4/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 4.26 1.99 7.92 10.33 8.21 11.77 18.62 
10 4.84 2.76 11.37 13.06 10.39 15.14 23.95 
15 5.99 2.39 9.98 16.65 13.24 7.19 11.37 
20 8.08 3.62 14.30 20.66 16.42 9.58 15.16 
25 8.39 3.47 14.38 24.87 19.77 6.68 10.57 
30 11.63 5.19 20.37 29.21 23.22 9.73 15.39 
35 13.33 5.28 22.00 33.63 26.73 8.56 13.55 
40 13.78 6.27 24.44 38.09 30.28 8.24 13.03 
45 14.79 5.42 23.71 42.58 33.85 6.20 9.81 
50 16.99 6.73 28.09 47.10 37.45 7.11 11.25 
55 18.59 6.92 30.25 51.64 41.05 6.86 10.86 
60 18.76 7.27 30.78 56.19 44.67 6.00 9.50 
65 21.33 7.87 34.21 60.75 48.30 6.34 10.03 
70 21.29 8.27 35.04 65.32 51.93 5.75 9.10 
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Length of the datum feature, 𝒍𝒍𝐀𝐀 = 15 mm 

Table II-30: Chi-squared analysis with the experimental uncertainty 𝑈𝑈1. Length of the datum 
feature, 𝑙𝑙A = 15 mm. 

𝑑𝑑/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈1/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 3.77 2.26 8.72 9.7 7.7 16.04 25.37 
10 4.23 2.71 10.00 11.1 8.8 16.22 25.67 
15 5.43 2.55 10.91 13.1 10.4 13.96 22.09 
20 5.94 3.66 13.52 15.4 12.2 15.42 24.40 
25 8.91 5.11 19.33 18.0 14.3 23.18 36.67 
30 10.65 5.28 21.39 20.7 16.4 21.44 33.93 
35 10.50 5.94 22.55 23.5 18.6 18.49 29.25 
40 11.30 4.96 21.43 26.3 20.9 13.27 21.00 
45 12.22 5.43 23.26 29.2 23.2 12.68 20.07 
50 13.57 5.82 25.37 32.1 25.6 12.46 19.71 
55 14.19 5.67 25.71 35.1 27.9 10.72 16.97 
60 16.14 6.07 28.45 38.1 30.3 11.16 17.66 
65 16.09 6.08 28.42 41.1 32.7 9.57 15.15 

Table II-31: Chi-squared analysis with the experimental uncertainty 𝑈𝑈2. Length of the datum 
feature, 𝑙𝑙A = 15 mm. 

𝑑𝑑/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈2/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 3.77 2.26 9.02 9.74 7.74 17.18 27.18 
10 4.23 2.71 10.24 11.10 8.83 17.01 26.91 
15 5.43 2.55 12.17 13.06 10.39 17.35 27.45 
20 5.94 3.66 14.09 15.40 12.24 16.75 26.51 
25 8.91 5.11 20.64 17.95 14.27 26.43 41.82 
30 10.65 5.28 23.85 20.66 16.42 26.67 42.20 
35 10.50 5.94 24.21 23.45 18.64 21.32 33.73 
40 11.30 4.96 24.77 26.31 20.92 17.73 28.05 
45 12.22 5.43 26.82 29.21 23.22 16.86 26.68 
50 13.57 5.82 29.60 32.15 25.56 16.95 26.82 
55 14.19 5.67 30.64 35.11 27.91 15.23 24.09 
60 16.14 6.07 34.55 38.09 30.28 16.46 26.04 
65 16.09 6.08 34.47 41.08 32.66 14.08 22.27 
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Table II-32: Chi-squared analysis with the experimental uncertainty 𝑈𝑈4. Length of the datum 
feature, 𝑙𝑙A = 15 mm. 

𝑑𝑑/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈4/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 3.77 2.26 8.07 9.74 7.74 13.73 21.72 
10 4.23 2.71 9.32 11.10 8.83 14.09 22.29 
15 5.43 2.55 10.07 13.06 10.39 11.89 18.82 
20 5.94 3.66 12.78 15.40 12.24 13.78 21.80 
25 8.91 5.11 18.07 17.95 14.27 20.26 32.05 
30 10.65 5.28 20.09 20.66 16.42 18.92 29.93 
35 10.50 5.94 20.98 23.45 18.64 16.01 25.33 
40 11.30 4.96 19.96 26.31 20.92 11.51 18.22 
45 12.22 5.43 21.74 29.21 23.22 11.08 17.53 
50 13.57 5.82 23.63 32.15 25.56 10.81 17.10 
55 14.19 5.67 24.31 35.11 27.91 9.59 15.17 
60 16.14 6.07 26.83 38.09 30.28 9.92 15.70 
65 16.09 6.08 26.52 41.08 32.66 8.33 13.18 

Length of the datum feature, 𝒍𝒍𝐀𝐀 = 20 mm 

Table II-33: Chi-squared analysis with the experimental uncertainty 𝑈𝑈1. Length of the datum 
feature, 𝑙𝑙A = 20 mm. 

𝑑𝑑/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈1/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 3.18 1.70 7.13 9.5 7.6 11.21 17.73 
10 3.90 1.64 7.73 10.3 8.2 11.21 17.73 
15 4.13 2.31 9.17 11.5 9.2 12.61 19.95 
20 6.69 3.88 14.71 13.1 10.4 25.36 40.13 
25 7.99 5.29 18.76 14.8 11.8 32.19 50.93 
30 7.46 4.68 17.03 16.7 13.2 20.92 33.11 
35 7.38 4.17 15.97 18.6 14.8 14.71 23.27 
40 8.78 5.11 19.20 20.7 16.4 17.29 27.35 
45 9.56 4.56 18.90 22.7 18.1 13.81 21.84 
50 9.69 4.81 19.51 24.9 19.8 12.30 19.46 
55 11.26 5.34 22.12 27.0 21.5 13.39 21.19 
60 10.48 5.50 21.67 29.2 23.2 11.00 17.41 
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Table II-34: Chi-squared analysis with the experimental uncertainty 𝑈𝑈2. Length of the datum 
feature, 𝑙𝑙A = 20 mm. 

𝑑𝑑/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈2/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 3.18 1.70 7.49 9.52 7.57 12.38 19.59 
10 3.90 1.64 8.69 10.33 8.21 14.15 22.38 
15 4.13 2.31 9.68 11.55 9.18 14.04 22.22 
20 6.69 3.88 15.60 13.06 10.39 28.53 45.14 
25 7.99 5.29 19.27 14.79 11.76 33.97 53.74 
30 7.46 4.68 17.73 16.65 13.24 22.67 35.87 
35 7.38 4.17 17.08 18.62 14.80 16.82 26.62 
40 8.78 5.11 20.42 20.66 16.42 19.55 30.93 
45 9.56 4.56 21.27 22.74 18.08 17.50 27.68 
50 9.69 4.81 21.72 24.87 19.77 15.25 24.13 
55 11.26 5.34 25.00 27.03 21.49 17.11 27.07 
60 10.48 5.50 23.76 29.21 23.22 13.23 20.93 

Table II-35: Chi-squared analysis with the experimental uncertainty 𝑈𝑈4. Length of the datum 
feature, 𝑙𝑙A = 20 mm. 

𝑑𝑑/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈4/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 3.18 1.70 6.48 9.52 7.57 9.26 14.66 
10 3.90 1.64 6.98 10.33 8.21 9.14 14.46 
15 4.13 2.31 8.43 11.55 9.18 10.67 16.88 
20 6.69 3.88 13.88 13.06 10.39 22.57 35.71 
25 7.99 5.29 17.79 14.79 11.76 28.96 45.82 
30 7.46 4.68 15.96 16.65 13.24 18.37 29.06 
35 7.38 4.17 14.93 18.62 14.80 12.85 20.34 
40 8.78 5.11 21.43 20.66 16.42 21.52 34.06 
45 9.56 4.56 17.42 22.74 18.08 11.74 18.57 
50 9.69 4.81 18.20 24.87 19.77 10.71 16.95 
55 11.26 5.34 20.41 27.03 21.49 11.40 18.04 
60 10.48 5.50 20.23 29.21 23.22 9.59 15.17 
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Length of the datum feature, 𝒍𝒍𝐀𝐀 = 25 mm 

Table II-36: Chi-squared analysis with the experimental uncertainty 𝑈𝑈1. Length of the datum 
feature, 𝑙𝑙A = 25 mm. 

𝑑𝑑/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈1/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 3.91 2.21 8.76 9.4 7.5 17.28 27.35 
10 4.31 2.03 8.84 9.9 7.9 15.77 24.96 
15 5.88 3.32 12.82 10.8 8.6 28.31 44.80 
20 7.35 3.61 14.85 11.8 9.4 31.50 49.83 
25 6.98 3.55 14.35 13.1 10.4 24.13 38.18 
30 6.36 3.55 13.73 14.4 11.5 18.10 28.63 
35 8.19 3.36 15.20 15.9 12.6 18.29 28.94 
40 8.92 4.57 18.27 17.4 13.9 21.97 34.77 
45 8.99 3.82 16.89 19.0 15.1 15.76 24.94 
50 10.66 3.88 18.68 20.7 16.4 16.36 25.89 
55 9.80 3.88 17.81 22.3 17.7 12.73 20.14 

Table II-37: Chi-squared analysis with the experimental uncertainty 𝑈𝑈2. Length of the datum 
feature, 𝑙𝑙A = 25 mm. 

𝑑𝑑/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈2/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 3.91 2.21 9.20 9.42 7.49 19.07 30.17 
10 4.31 2.03 9.73 9.95 7.91 19.14 30.29 
15 5.88 3.32 13.66 10.77 8.56 32.13 50.84 
20 7.35 3.61 16.50 11.83 9.40 38.92 61.58 
25 6.98 3.55 15.79 13.06 10.39 29.22 46.23 
30 6.36 3.55 14.70 14.43 11.47 20.74 32.82 
35 8.19 3.36 17.82 15.89 12.64 25.15 39.79 
40 8.92 4.57 20.14 17.43 13.86 26.69 42.23 
45 8.99 3.82 19.63 19.02 15.12 21.31 33.71 
50 10.66 3.88 22.79 20.66 16.42 24.34 38.51 
55 9.80 3.88 21.17 22.32 17.75 17.99 28.46 
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Table II-38: Chi-squared analysis with the experimental uncertainty 𝑈𝑈4. Length of the datum 
feature, 𝑙𝑙A = 25 mm. 

𝑑𝑑/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈4/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 3.91 2.21 8.20 9.42 7.49 15.14 23.95 
10 4.31 2.03 8.04 9.95 7.91 13.06 20.67 
15 5.88 3.32 12.07 10.77 8.56 25.09 39.70 
20 7.35 3.61 13.78 11.83 9.40 27.14 42.94 
25 6.98 3.55 13.28 13.06 10.39 20.68 32.72 
30 6.36 3.55 13.30 14.43 11.47 17.00 26.90 
35 8.19 3.36 13.94 15.89 12.64 15.38 24.33 
40 8.92 4.57 16.97 17.43 13.86 18.97 30.01 
45 8.99 3.82 15.41 19.02 15.12 13.13 20.78 
50 10.66 3.88 16.89 20.66 16.42 13.38 21.17 
55 9.80 3.88 16.27 22.32 17.75 10.62 16.80 

Length of the datum feature, 𝒍𝒍𝐀𝐀 = 30 mm 

Table II-39: Chi-squared analysis with the experimental uncertainty 𝑈𝑈1. Length of the datum 
feature, 𝑙𝑙A = 30 mm. 

𝑑𝑑/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈1/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 3.42 1.91 7.73 9.4 7.4 13.63 21.57 
10 5.19 3.80 13.05 9.7 7.7 35.94 56.87 
15 5.55 3.60 13.03 10.3 8.2 31.85 50.40 
20 5.23 3.30 12.13 11.1 8.8 23.88 37.78 
25 5.53 3.26 12.36 12.0 9.6 21.13 33.43 
30 5.73 3.44 12.90 13.1 10.4 19.50 30.86 
35 6.52 4.59 15.90 14.2 11.3 25.11 39.73 
40 5.77 3.21 12.50 15.4 12.2 13.18 20.85 
45 6.17 3.94 14.31 16.7 13.2 14.76 23.36 
50 6.66 3.78 14.47 18.0 14.3 12.99 20.56 
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Table II-40: Chi-squared analysis with the experimental uncertainty 𝑈𝑈2. Length of the datum 
feature, 𝑙𝑙A = 30 mm. 

𝑑𝑑/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈2/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 3.42 1.91 8.09 9.37 7.45 14.92 23.61 
10 5.19 3.80 13.03 9.74 7.74 35.80 56.63 
15 5.55 3.60 13.39 10.33 8.21 33.62 53.20 
20 5.23 3.30 12.53 11.10 8.83 25.49 40.33 
25 5.53 3.26 13.00 12.02 9.56 23.38 36.99 
30 5.73 3.44 13.52 13.06 10.39 21.43 33.90 
35 6.52 4.59 16.06 14.19 11.28 25.62 40.53 
40 5.77 3.21 13.36 15.40 12.24 15.07 23.84 
45 6.17 3.94 14.79 16.65 13.24 15.77 24.94 
50 6.66 3.78 15.44 17.95 14.27 14.78 23.39 

Table II-41: Chi-squared analysis with the experimental uncertainty 𝑈𝑈4. Length of the datum 
feature, 𝑙𝑙A = 30 mm. 

𝑑𝑑/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈4/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 3.42 1.91 7.19 9.37 7.45 11.78 18.65 
10 5.19 3.80 12.83 9.74 7.74 34.71 54.91 
15 5.55 3.60 12.06 10.33 8.21 27.26 43.13 
20 5.23 3.30 11.21 11.10 8.83 20.37 32.24 
25 5.53 3.26 11.54 12.02 9.56 18.41 29.13 
30 5.73 3.44 14.01 13.06 10.39 22.99 36.37 
35 6.52 4.59 14.77 14.19 11.28 21.66 34.26 
40 5.77 3.21 11.60 15.40 12.24 11.36 17.98 
45 6.17 3.94 13.51 16.65 13.24 13.17 20.83 
50 6.66 3.78 13.46 17.95 14.27 11.24 17.78 

Length of the datum feature, 𝒍𝒍𝐀𝐀 = 35 mm 

Table II-42: Chi-squared analysis with the experimental uncertainty 𝑈𝑈1. Length of the datum 
feature, 𝑙𝑙A = 35 mm. 

𝑑𝑑/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈1/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 5.96 3.25 12.77 9.3 7.4 37.45 59.25 
10 5.91 4.43 15.00 9.6 7.6 48.78 77.18 
15 5.27 4.07 13.65 10.1 8.0 36.91 58.40 
20 5.72 2.83 11.73 10.6 8.5 24.33 38.50 
25 6.47 3.82 14.37 11.4 9.0 32.04 50.70 
30 7.04 3.83 14.94 12.2 9.7 30.17 47.73 
35 6.23 3.86 14.20 13.1 10.4 23.62 37.37 
40 7.38 4.19 16.00 14.0 11.2 26.00 41.14 
45 6.18 4.18 14.78 15.0 12.0 19.29 30.53 
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Table II-43: Chi-squared analysis with the experimental uncertainty 𝑈𝑈2. Length of the datum 
feature, 𝑙𝑙A = 35 mm. 

𝑑𝑑/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈2/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 5.96 3.25 13.73 9.33 7.42 43.29 68.50 
10 5.91 4.43 14.92 9.61 7.64 48.22 76.30 
15 5.27 4.07 13.46 10.05 7.99 35.89 56.78 
20 5.72 2.83 12.93 10.64 8.46 29.54 46.74 
25 6.47 3.82 15.16 11.35 9.03 35.65 56.40 
30 7.04 3.83 16.14 12.17 9.67 35.20 55.69 
35 6.23 3.86 14.78 13.06 10.39 25.62 40.53 
40 7.38 4.19 17.09 14.03 11.15 29.67 46.94 
45 6.18 4.18 15.05 15.05 11.96 20.02 31.68 

Table II-44: Chi-squared analysis with the experimental uncertainty 𝑈𝑈4. Length of the datum 
feature, 𝑙𝑙A = 35 mm. 

𝑑𝑑/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈4/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 5.96 3.25 11.84 9.33 7.42 32.18 50.91 
10 5.91 4.43 13.92 9.61 7.64 41.99 66.43 
15 5.27 4.07 12.67 10.05 7.99 31.80 50.32 
20 5.72 2.83 10.87 10.64 8.46 20.89 33.05 
25 6.47 3.82 13.60 11.35 9.03 28.70 45.41 
30 7.04 3.83 13.96 12.17 9.67 26.32 41.64 
35 6.23 3.86 13.39 13.06 10.39 21.02 33.26 
40 7.38 4.19 14.89 14.03 11.15 22.54 35.65 
45 6.18 4.18 14.08 15.05 11.96 17.50 27.69 
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Common datum A-B, 𝒍𝒍𝐀𝐀−𝐀𝐀 = 80 mm 

Table II-45: Chi-squared analysis with the experimental uncertainty 𝑈𝑈1. Common datum A-B, 
𝑙𝑙A−B = 80 mm. 

ℎ/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈1/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 3.09 2.28 8.06 9.3 7.4 15.17 24.00 
10 2.66 1.03 5.53 9.3 7.4 7.07 11.18 
15 3.02 1.14 6.05 9.4 7.5 8.28 13.11 
20 2.62 1.38 6.02 9.5 7.6 8.00 12.65 
25 3.06 1.21 6.20 9.7 7.7 8.22 13.00 
30 2.50 1.42 5.96 9.9 7.8 7.31 11.57 
35 2.70 1.83 6.87 10.1 8.0 9.29 14.70 
40 4.65 3.16 11.28 10.3 8.2 23.88 37.78 
45 4.26 3.63 11.79 10.1 8.0 27.34 43.25 
50 3.40 3.38 10.45 9.9 7.8 22.44 35.50 
55 3.70 1.94 8.06 9.7 7.7 13.87 21.95 
60 4.09 2.20 8.92 9.5 7.6 17.56 27.78 
65 3.77 2.06 8.35 9.4 7.5 15.77 24.95 
70 3.03 1.72 7.00 9.3 7.4 11.31 17.89 
75 3.08 1.46 6.62 9.3 7.4 10.23 16.19 

Table II-46: Chi-squared analysis with the experimental uncertainty 𝑈𝑈2. Common datum A-B, 
𝑙𝑙A−B = 80 mm. 

ℎ/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈2/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 3.09 2.28 7.93 9.3 7.4 14.68 23.23 
10 2.66 1.03 6.05 9.3 7.4 8.44 13.35 
15 3.02 1.14 6.75 9.4 7.5 10.32 16.33 
20 2.62 1.38 6.25 9.5 7.6 8.61 13.62 
25 3.06 1.21 6.88 9.7 7.7 10.11 16.00 
30 2.50 1.42 6.08 9.9 7.8 7.59 12.01 
35 2.70 1.83 6.83 10.1 8.0 9.17 14.50 
40 4.65 3.16 11.42 10.3 8.2 24.46 38.70 
45 4.26 3.63 11.37 10.1 8.0 25.44 40.25 
50 3.40 3.38 9.80 9.9 7.8 19.72 31.21 
55 3.70 1.94 8.59 9.7 7.7 15.74 24.91 
60 4.09 2.20 9.50 9.5 7.6 19.91 31.50 
65 3.77 2.06 8.82 9.4 7.5 17.61 27.86 
70 3.03 1.72 7.24 9.3 7.4 12.11 19.16 
75 3.08 1.46 7.11 9.3 7.4 11.80 18.66 
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Table II-47: Chi-squared analysis with the experimental uncertainty 𝑈𝑈4. Common datum A-B, 
𝑙𝑙A−B = 80 mm. 

ℎ/mm Bias 
𝑏𝑏/mm 𝑢𝑢p/µm 𝑈𝑈4/µm 𝑈𝑈B2/µm 

(𝑏𝑏1 = 0.58) 
𝑈𝑈B2/µm 

(𝑏𝑏2 = 0.459) 
𝜒𝜒12 

(𝑏𝑏1 = 0.577) 
𝜒𝜒22 

(𝑏𝑏2 = 0.459) 

5 3.09 2.28 8.30 9.26 7.36 16.08 25.44 
10 2.66 1.03 4.80 9.31 7.40 5.32 8.41 
15 3.02 1.14 5.34 9.40 7.47 6.45 10.21 
20 2.62 1.38 5.42 9.52 7.57 6.47 10.24 
25 3.06 1.21 5.43 9.68 7.69 6.29 9.95 
30 2.50 1.42 5.39 9.87 7.84 5.96 9.43 
35 2.70 1.83 6.41 10.08 8.02 8.09 12.80 
40 4.65 3.16 10.51 10.33 8.21 20.70 32.75 
45 4.26 3.63 10.86 10.08 8.02 23.22 36.74 
50 3.40 3.38 9.55 9.87 7.84 18.73 29.64 
55 3.70 1.94 7.39 9.68 7.69 11.66 18.45 
60 4.09 2.20 8.17 9.52 7.57 14.73 23.31 
65 3.77 2.06 7.73 9.40 7.47 13.53 21.40 
70 3.03 1.72 6.35 9.31 7.40 9.32 14.74 
75 3.08 1.46 5.94 9.26 7.36 8.23 13.02 
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Conclusions 
Two a priori methods were introduced in this document for the evaluation of the measurement 
uncertainty in coordinate metrology. They are a priori in that the information they use is known 
prior to any measurement is taken. Following the GUM’s classification of uncertainty 
evaluations (Type A and B, founded on frequency and a priori distributions, respectively), these 
methods are referred to as Methods B. 
These methods follow the main stream described in the GUM: the input uncertainty are 
identified and evaluated, and then propagated to the combined uncertainties. This requires two 
pieces of information: the input uncertainties and the sensitivity coefficients. 
The input uncertainties are derived from known and standardized values of CMM metrological 
characteristics, either the measured values in actual EN ISO 10360 testing (when available) 
or their associated MPEs (Maximum Permissible Error) derived from data sheet or other 
sources. 
The sensitivity coefficients are often conveniently arranged in matrices. They encode the 
information of the geometry of the problem, the sampling strategy and the selection and 
sequence of mathematical operators used to derive the results. The geometry is usually 
encoded in a drawing or CAD model and it is available as long as a specific measurement task 
is defined. The choice of the sampling and computational strategies is a valuable part of the 
metrologist’s role. Different metrologists may favour different strategies deemed as most 
valuable for a specific characteristic. For instance, a very accurate strategy may be very 
expensive as well. Predicting the strategy-specific uncertainty is a valuable tool for designing 
and optimising experimental plans. 
The proposed methods are unidirectional in their flow: given a strategy (and other information), 
they derive the uncertainty. The opposite (given a target uncertainty, define a strategy) would 
be very useful but difficult to do. The proposed approach leaves the optimisation to the 
metrologist’s expert judgement, who decides which strategies to try out. The evaluation 
method helps in comparing alternatives by predicting the uncertainty of each, in a 
trial-and-error approach. 
The two methods B proposed in this document share the same approach to the evaluation of 
the input uncertainties, based on EN ISO 10360-based information. They differ instead in the 
sensitivity analysis, resulting in completely independent methods. 

• Method B1 divides the sensitivity analysis in two steps: from the input uncertainties to 
the sampled points (point cloud), and from the point cloud to the measurands. The 
former step is based on approximated models of the CMM behaviour, constrained to 
be consistent with the EN ISO 10360 performance. The latter step is independent of 
any CMM and is a pure geometrical problem. 

• Method B2 is based on the careful selection of a small set of points. They may lay either 
on the workpiece surface or on a derived feature such as the axis of a cylinder. The set 
must be essential and paradigmatic: essential in that the measurands would not be 
achievable with lesser points; paradigmatic in that their locations represent reasonable 
sets of nearby measured points. As the set is essential (no redundancy and then no 
approximation), the measurands can be derived from the selected points in closed 
form. The sensitivity matrix is then formed by derivation of such analytical expressions. 

Method B1 is very rigorous in its GUM-compliant approach. The price paid to dominate the 
intrinsic complexity of the problem is the approximation of the CMM error model. The rigid body 
model is well known in literature and well known is its very large number of error parameters, 
order of several hundreds. This would require a huge input variance matrix impossible to 
predict. The model is then simplified drastically based on the experience that few errors 
dominates and that close points are likely behaving similarly. The resulting few model 
parameters can be derived from the EN ISO 10360 values. Method B1 is able of tailoring the 
uncertainty evaluation to fine details of the sampling strategy, particularly when alternatives 
are evaluated. On the other hand, it requires dedicated software–all based on linear algebra 
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and implementable in common spreadsheets–whose development is usually not in the reach 
of CMM users. 
The approximation underpinning Method B2 is completely different conceptually. Actual points 
are addressed collectively by means of the selected set. Subtleties in the probing strategies 
are disregarded by the method, which is then not suitable to discriminate among alternatives. 
On the other hand, the closed form enables derivation of the sensitivity coefficients once for 
all for any measurand. The resulting equations are simple enough that its coding in software 
is in the reach of educated CMM users. They can be recorded in tables and published in 
standards, so that no specific software is essential for applying the method. 
The proposed methods are mature enough to be submitted for standardization to the 
competent ISO/TC 213/WG 10, as underpinned by the validation results reported in the project 
deliverables D3 and D4. 
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