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Abstract 

The paper presents a detailed theoretical background for coordinate measurement uncertainty evaluation by means 

of Type B evaluation method, taking into account information on accuracy of a coordinate measuring system given 

with the formula for maximum permissible errors of length measurement and verification test results. A proposal 

for evaluation of the verification test results is made. A measurement model based on the point-plane distance 

equation is presented. A detailed analysis of the partial derivatives (sensitivity factors in an uncertainty budget) of 

the measurement model is presented. The analyses of measurement uncertainty for different geometrical 

characteristics were conducted using this measurement model. Examples of uncertainty evaluation for geometrical 

deviations are presented: position of a point related to a datum plane and flatness in the case of convex or concave 

surfaces. The examples include detailed uncertainty budgets. 
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1. Introduction 

Technical specification ISO/TS 15530-1 [1] distinguishes three methods of estimating 

uncertainty: sensitivity analysis, use of calibrated workpieces or standards and use of computer 

simulation. This classification diverges from the one used in Guide to the Expression of 

Uncertainty in Measurement (GUM), where the first two stages of the process of estimating 

uncertainty are defined: formulation and calculation, the latter being divided into propagation 

and summarizing [2]. Only for the propagation stage there are three possibilities: the GUM 

uncertainty framework, analytic methods and a Monte Carlo method. Without going into 

details, the sensitivity analysis is practically the GUM uncertainty framework while computer 

simulation is a Monte Carlo method. It is worth noting that in the GUM there is no equivalent 

to the "use of a calibrated object" method, and ISO 15530-1 does not mention of the possibility 

of an analytical approach. 

The most objective method of estimating the uncertainty of coordinate measurements is the 

method using a calibrated object (artefact), in the form of the object being measured, provided 

that the procedure was correctly used [3, 4]. In this method, almost whole uncertainty is 

determined experimentally. For proper use of the method, dimensional stability and high 

similarity of the calibrated object are important, especially in terms of the coefficient of thermal 

expansion. It is also important to properly design and conduct the experiment to randomize 

disturbing factors. 

With regard to simulation methods, it should be borne in mind that the quality of simulation 

results depends on the quality of the coordinate measuring machine (CMM) errors data used. 
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However, the most important limitation of the use of simulation software results from the time-

consuming implementation procedure followed by periodic updating of input information [5]. 

In the context of this publication, attention should be paid to the "simulation by constraint" 

method [6], due to the fact that the input information there, is a formula for MPE(E). 

 The method presented in VDI/VDE 2617-11 [7], based on the work of Pressel [8] and 

Hernla [9], can be considered as a method of sensitivity analysis. The relationships between 

some of the machine's geometrical errors (perpendicularity, straightness) and the parameters of 

the formula for the maximum permissible length measurement error MPE(E) are shown there. 

Measurement models and sample uncertainty budgets for size and distance are given. However, 

the document does not contain complete measurement models for geometric deviations and is 

difficult to use because it requires understanding the significance of each uncertainty 

contributor [10]. 

The use of information contained in the formulae for MPE(E) and MPE(P) has also been 

proposed by Cheng [11]. The proposed approach was named the quantitative statistical analysis 

method. It was considered that from the point of view of uncertainty of coordinate 

measurements, three types of characteristics should be assessed differently: dimensions, form 

deviations, and orientation and location deviations. It was indicated which elements of the 

MPE(E) or MPE(P) formulae should be used to estimate the uncertainty in individual cases. 

Repeatability and reproducibility were indicated as additional two components of measurement 

uncertainty (an experimental method for obtaining them was proposed). Separate analyses were 

made for the dimension, form, two orientation deviations and two location deviations. The 

presented proposal is very similar to Pressel et al. and Hernla's [8, 9]. 

In [12, 13] it has been shown that the basic condition for correct assessment of the 

measurement uncertainty component derived from CMM is to treat the coordinate measurement 

as an indirect measurement with the following conditions: the measured characteristics 

(dimensions, geometric deviations) should be expressed as a function of differences of 

coordinates of selected points corresponding to the measurement strategy based on the 

minimum mathematical number of points. When using the minimum number of points in the 

model, there is no need for including correlation, and thanks to using differences in point 

coordinates (instead of point coordinates), measurement traceability is ensured (compliance of 

the measurement model with the calibration procedure). 

The problem of estimation of task specific uncertainty, especially in industrial conditions, is 

still up-to-date and investigated by many research centres [14-17]. 

2. Measurement model 

The paper continues the concepts introduced in [18] where the point-straight line distance 

formula was used as the measurement model for uncertainty evaluation but the point-plane 

distance formula is used as the measurement model. Similarly, in this paper all geometrical 

characteristics (dimensions and deviations of form, orientation, location and runout) will be 

expressed as functions of coordinate differences of characteristic points where the characteristic 

points are appropriately selected points of integral features (surfaces) or derived features (e.g. 

the symmetry plane) 

 𝑙 = 𝑓(𝑥𝑖)  (1) 

where l – geometrical characteristic, xi – coordinates’ differences of particular pairs of 

characteristic points. 

  



Metrol. Meas. Syst., Vol. 27 (2020), No. 4. 

DOI: 10.24425/mms.2020.134843 

 

Consequently, the combined standard uncertainty of measurement uc will be calculated as 

 𝑢𝑐 = √∑ (
𝜕𝑙

𝜕𝑥𝑖
𝑢𝑥𝑖)

2
𝑛
𝑖=1   (2) 

where: xi – differences of coordinates of particular pairs of points occurring in the measurement 

model, uxi – measurement uncertainty of particular differences of coordinates of particular pairs 

of points. 

The general formula for calculating distance l between point S and plane p defined by point 

P and the unit normal vector v is  

 𝑙(𝑆, 𝑝) = |(𝑷 − 𝑺) ∙ 𝒗|  (3) 

In the following, plane p is represented by three points (Fig. 1). 

 

Fig. 1. Distance between the point and the plane defined by three points. 

If the plane p is represented by points A, B and C then the unit normal vector v can be defined 

in three ways (it turns out that it matters): 

 𝒗 =
𝑨𝑩×𝑨𝑪

|𝑨𝑩×𝑨𝑪|
 𝑜𝑟 𝒗 =

𝑩𝑨×𝑩𝑪

|𝑩𝑨×𝑩𝑪|
 𝑜𝑟 𝒗 =

𝑪𝑨×𝑪𝑩

|𝑪𝑨×𝑪𝑩|
. (4) 

Point A, B or C can be assumed as point P in the formula (3) thus there are nine variants of 

the measurement model and each of them can be used for uncertainty evaluation. If the results 

of particular variants differ, it is justified to choose the smallest value:  

 𝑢𝑐 = 𝑚𝑖𝑛(𝑢𝑐𝑗), 𝑗 = 1, … , 9. (5) 

The measurement model for variant 1 is  

 𝑙(𝐴𝑆, 𝐴𝐵, 𝐴𝐶) = |𝑨𝑺 ∙
𝑨𝑩×𝑨𝑪

|𝑨𝑩×𝑨𝑪|
|. (6) 

The derived formula for the distance l (measurement model) is: 

 𝑙(𝑎𝑠1, 𝑎𝑠2, 𝑎𝑠3, 𝑎𝑏1, 𝑎𝑏2, 𝑎𝑏3, 𝑎𝑐1, 𝑎𝑐2, 𝑎𝑐3) =
𝑎𝑠1𝐿1+𝑎𝑠2𝐿2+𝑎𝑠3𝐿3

𝑀
 (7) 

where 

 𝐿1 = 𝑎𝑏2𝑎𝑐3 − 𝑎𝑏3𝑎𝑐2, (8) 

 𝐿2 = 𝑎𝑏3𝑎𝑐1 − 𝑎𝑏1𝑎𝑐3, (9) 

 𝐿3 = 𝑎𝑏1𝑎𝑐2 − 𝑎𝑏2𝑎𝑐1, (10) 

 𝑀 = √𝐿1
2 + 𝐿2

2 + 𝐿3
2 . (11) 
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The distance l is a function of nine differences of coordinates (components of vectors AB, 

AC and AS), thus the combined measurement uncertainty is geometrical sum of nine elements: 

 𝑢𝑐1 = √∑ (
𝜕𝑙

𝜕𝑥𝑖
𝑢𝑥𝑖)

2
9
𝑖=1 . (12) 

The derivatives present in the formula are weights (sensitivity coefficients), with which the 

measurement uncertainties of individual distances affect the measurement uncertainty of the 

measured characteristics. The respective derivatives 
𝜕𝑙

𝜕𝑥𝑖
 are: 

 
𝜕𝑙

𝜕𝑎𝑠1
=

𝐿1

𝑀
, (13) 

 
𝜕𝑙

𝜕𝑎𝑠2
=

𝐿2

𝑀
, (14) 

 
𝜕𝑙

𝜕𝑎𝑠3
=

𝐿3

𝑀
, (15) 

 
𝜕𝑙

𝜕𝑎𝑏1
=

(−𝑎𝑠1𝐿1−𝑎𝑠2𝐿2−𝑎𝑠3𝐿3)(𝑎𝑐3𝐿2+𝑎𝑐2𝐿3)

𝑀3 +
𝑎𝑠3𝑎𝑐2−𝑎𝑠2𝑎𝑐3

𝑀
, (16) 

 
𝜕𝑙

𝜕𝑎𝑏2
=

(−𝑎𝑠1𝐿1−𝑎𝑠2𝐿2−𝑎𝑠3𝐿3)(𝑎𝑐3𝐿1−𝑎𝑐1𝐿3)

𝑀3 +
𝑎𝑠1𝑎𝑐3−𝑎𝑠3𝑎𝑐1

𝑀
, (17) 

 
𝜕𝑙

𝜕𝑎𝑏3
=

(−𝑎𝑠1𝐿1−𝑎𝑠2𝐿2−𝑎𝑠3𝐿3)(𝑎𝑐1𝐿2−𝑎𝑐2𝐿1)

𝑀3 +
𝑎𝑠2𝑎𝑐1−𝑎𝑠1𝑎𝑐2

𝑀
, (18) 

 
𝜕𝑙

𝜕𝑎𝑐1
=

(−𝑎𝑠1𝐿1−𝑎𝑠2𝐿2−𝑎𝑠3𝐿3)(𝑎𝑏3𝐿2−𝑎𝑏2𝐿3)

𝑀3 +
𝑎𝑠2𝑎𝑏3−𝑎𝑠3𝑎𝑏2

𝑀
, (19) 

 
𝜕𝑙

𝜕𝑎𝑐2
=

(−𝑎𝑠1𝐿1−𝑎𝑠2𝐿2−𝑎𝑠3𝐿3)(𝑎𝑏1𝐿3−𝑎𝑏3𝐿1)

𝑀3 +
𝑎𝑠3𝑎𝑏1−𝑎𝑠1𝑎𝑏3

𝑀
, (20) 

 
𝜕𝑙

𝜕𝑎𝑐3
=

(−𝑎𝑠1𝐿1−𝑎𝑠2𝐿2−𝑎𝑠3𝐿3)(𝑎𝑏2𝐿1−𝑎𝑏1𝐿2)

𝑀3 +
𝑎𝑠1𝑎𝑏2−𝑎𝑠2𝑎𝑏1

𝑀
. (21) 

Respectively the component uncertainties uxi are: uas1, uas2, uas3, uab1, uab2, uab3, uac1, uac2, 

uac3. 

It will be found that in some of the analysed cases the values of derivatives are constant for 

different values of the coordinates of point S. For the purpose of this publication, the values of 

the derivatives are presented in the form of colour surface plots. For the purpose of analysis, 

usually no specific derivative values are needed, and only the nature of the dependence is 

important, therefore no legend is placed next to the plots. If necessary, plots of the derivatives 

values in the selected cross-sections are placed next to the surface plot. 

The further illustration consider the example in which the datum plane is a square with the 

side slightly larger than 300 mm. The characteristic points, defining the plane, are distributed 

on the edges of the square with the side equal to 300 mm. The toleranced element is located 

200 mm away from the datum. The analysis of the measurement uncertainty is carried out for 

various positions of point S (toleranced feature) in a square-shaped area with a side of 400 mm. 

All analyses are performed for the workpiece oriented along the axes of the coordinate system 

i.e. points A, B and C lay in the same plane of the coordinate system. 

In the discussed variant for any location of point S six partial derivatives 
𝜕𝑙

𝜕𝑎𝑠1
,

𝜕𝑙

𝜕𝑎𝑠2
,

𝜕𝑙

𝜕𝑎𝑏1
,

𝜕𝑙

𝜕𝑎𝑏2
,

𝜕𝑙

𝜕𝑎𝑐1
,

𝜕𝑙

𝜕𝑎𝑐2
 equal 0 and one derivative 

𝜕𝑙

𝜕𝑎𝑠3
 equals 1. The values of the 

remaining two derivatives 
𝜕𝑙

𝜕𝑎𝑏3
,

𝜕𝑙

𝜕𝑎𝑐3
 depend on the location of point S. The plots of 

𝜕𝑙

𝜕𝑎𝑏3
 are 

presented in Fig. 2.  
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a) b) c) 

 

  

Fig. 2. Plots of derivative 
𝜕𝑙

𝜕𝑎𝑏3
 in function of location of point S:  

a) surface plot, b) plot of cross-section x = 0 mm, c) plot of cross-section y = 0 mm. 

The presented plots show that the derivative 
𝜕𝑙

𝜕𝑎𝑏3
 has constant values on the lines parallel to 

the line AC. The derivative over the analysed area changes its value in the range from -1.25 to 

0.75. The value of the derivative over points A, B, C equals respectively: 0, -1, 0. 

The plots of the derivative 
𝜕𝑙

𝜕𝑎𝑐3
 are presented in Fig. 3. 

 
a) b) 

 

 

 

Fig. 3. Plots of the derivative 
𝜕𝑙

𝜕𝑎𝑐3
 in function of location of point S:  

a) surface plot, b) plot of cross-section x = 0 mm. 

The presented plot shows that the derivative 
𝜕𝑙

𝜕𝑎𝑐3
 has constant values on the lines parallel to 

the line AB. The derivative over the analysed area changes its value in the range from -1.17 to 

0.17. The value of the derivative over points A, B, C equals respectively: 0, 0, -1. 

Similar calculations should be made for the remaining eight variants. The results of these 

calculations will be used in uncertainty budgets for specific characteristics based on this model. 

3. Evaluating information on CMM accuracy 

In its basic version, the GUM approach assumes that the measurement model is known (the 

function that links input quantities to the output quantity on the basis of which it is possible to 

determine the sensitivity coefficients) and that standard uncertainties for all input quantities are 

known or estimable. When the conditions of the central limit theorem are met, the combined 

uncertainty of measurement is calculated as a geometric sum of component uncertainties 

(products of the standard uncertainty of input quantities and sensitivity factors). The 

calculations are documented in the form of an uncertainty budget. 

In cases where input information is in the form of a series of observations, the uncertainties 

of individual input quantities are calculated as standard deviation from the recorded 
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observations (method A), and in cases where the information about the input quantity is a 

probability distribution, it is converted into standard deviation (method B). In the second case, 

most often symmetrical distributions of a simple form are used (e.g. uniform, U, bimodal) 

defined by means of maximum error values. 

The GUM approach generally does not use asymmetrical distributions and in justified cases 

the so-called symmetrisation is used. A typical example of symmetrisation for method B is 

replacement of systematic errors with a bimodal distribution [7], while in the case of method A 

it is replacement of standard deviation with a second moment relative to zero [19, p. 1.14]. 

In coordinate measurements, CMM and environmental conditions are the main determining 

factor of measurement accuracy. Information on CMM accuracy is usually presented as a linear 

function expressing the maximum permissible error of length measurement in function of the 

measured length L: MPE(E) = ± (A + BL/1000) or MPE(E) = ± (A + L/K). This formula covers 

the influence of environmental conditions within the range specified by the manufacturer. The 

accuracy of the CMM is verified by calibration (verification tests). 

The CMM calibration results are usually 105 length measurement errors of several material 

length standards [20]. Depending on technical conditions and actual environmental conditions 

of CMM usage, the error diagram (calibration results) uses a smaller or larger MPE(E) range. 

In order to take into account the state of CMM for estimating uncertainty, the author proposes 

to calculate the standard uncertainty of length measurement using the formula for MPE(E) and 

an appropriate factor , i.e. writing the formula for the standard uncertainty of length 

measurement uCMM in the form 

 𝑢𝐶𝑀𝑀 =
𝑀𝑃𝐸

𝜆
. (22) 

The coefficient b = 1/ (in case of uniform distribution  equals to √3) will be calculated on 

the basis of the calibration results as the square root of the second sample moment about zero 

from standardized error values (range (-1, 1)): 

 𝑏 =
1

𝜆
= √

1

105
∑ 𝐸𝑠𝑖

2105
𝑖=1  (23) 

where Esi are the values of Ei errors standardized according to the formula 

 𝐸𝑠𝑖 =
𝐸𝑖

𝑀𝑃𝐸(𝐸𝑖)
, 𝑖 = 1, … , 105. (24) 

The presented proposal is a generalization of the approach from [21, p. 8.4.5] to the situation 

in which MPE(E) is not a constant value but a function of the measured length, and that the 

parameter  which will be calculated by Type A evaluation method. In the absence of 

information on the nature of probability distribution of errors (when no CMM calibration 

certificate is available), assuming uniform distribution, standard uncertainty can be calculated 

with Type B evaluation as 

 𝑢𝐶𝑀𝑀 =
𝑀𝑃𝐸

√3
  (25) 

An example of a CMM errors diagram with plots of normal probability density functions is 

presented in Fig. 4. The plots were drawn in the ± 2uCMM range to show the essence of the 

proposed approach (outside the ± 2uCMM area, 5% of errors can be expected). For the example 

shown  = 2.55.  
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Fig. 4. Sample diagram of length measurement errors with plots of normal distribution density functions in the 

range ±2uCMM. 

In order to obtain comparability of results with those presented in [18], in the examples 

below it was assumed that  = 3 and the formula for the maximum permissible error of length 

measurement MPE(E) is 

 𝑀𝑃𝐸(𝐸) = ±(2 + 4𝐿/1000) µm. (26) 

4. Uncertainty of measurement of a point position related to a datum plane 

Figure 5 presents an example of a measurement model of point (centre of a ball) position 

related to a datum plane. 

 

Fig. 5. Example of specification and modelling of measurement of a point position related to a datum plane. 

The tolerance zone according to ISO 1101 is limited by a pair of planes parallel to the datum 

plane and equidistant from the point position defined by theoretically exact dimension (TED). 

The position deviation POSPT is the smallest distance between the mentioned pair of planes 

covering the relevant actual point, i.e. doubled value of distance l of point S from the plane 

distant from the datum by the value of the theoretically exact dimension lTED: 

 𝑃𝑂𝑆𝑃𝑇  = 2(𝑙 − 𝑙𝑇𝐸𝐷). (27) 

The standard uncertainty of point position measurement uPOSPT is therefore equal to twice 

the uncertainty of measurement of the distance of a point from plane ul. 

 𝑢𝑃𝑂𝑆𝑃𝑇 = 2 ∙ 𝑢𝑙 (28) 
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The uncertainty of position deviation measurement may depend on the location of point S in 

relation to the datum.  

In the following an example of a workpiece is presented in which the datum plane is a square 

with a side length of 300 mm and the toleranced element is located 200 mm from the datum. 

Evaluation of the measurement uncertainty is carried out for characteristic points: A(50, 50, 10), 

B(350, 50, 10), C(200, 350, 10), S(200, 50, 210).  

The calculated standard uncertainties of measurement of distance between the point and the 

plane for the variants 1-3 as the function of coordinates x, y (within the range of the datum plane 

extent) of point S are presented in Fig. 6. 

a) b) c) 

   
d) e) f) 

 

  

Fig. 6. The combined standard uncertainty of measurement of distance between a point and a plane:  

a) variant 1 (AS AB AC), b) variant 2 (BS AB AC), c) variant 3 (CS AB AC), d) minimum from variants 1-3, 

e) plot of section x = 200 mm, f) plot of section y = 200 mm. 

The uncertainty values vary over the analysed area from ca. 0.93 m to 1.05 µm. The 

smallest values occur over points A, B, C and are 0.93 µm. 

The final result of measurement uncertainty calculated with formula (5) is presented in 

Fig. 7.  

a) 

 

b) 

 

Fig. 7. The final result of calculated combined standard uncertainty of measurement of distance between a point 

and a plane: a) minimum from variants 1-9, b) plot of section x = 200 mm. 

It can be seen in the figures above that the uncertainty values depend on the location of point 

S, but the differences over the analysed area are not large. For the presented example (the datum 



Metrol. Meas. Syst., Vol. 27 (2020), No. 4. 

DOI: 10.24425/mms.2020.134843 

 

plane is a square with a side of 300 mm, the toleranced element is 200 mm away from the 

datum) the values of complex uncertainty are in the range from 0.93 to 0.99 µm. 

The obtained results allow to analyse the problem of dependence of measurement 

uncertainty on coordinates x, y of the sphere centre. It can be seen that the uncertainty of 

measurement is the smallest if the centre of the ball lies above one of the characteristic points 

and increases as it moves away from this point (Fig. 7b, section x = 200 mm). 

The graphs shown in Fig. 7 indicate that the measurement uncertainty of the position of a 

point depends (although only to a small extent) on the location of the centre of the ball relative 

to the datum edges. The extent to which uncertainty depends on the distance of the toleranced 

element from the datum can be seen in the uncertainty budget (Tables 1 and 2). 

The uncertainty budgets for the measurement of the distance of a point from a plane, for 

point S with coordinates (200, 350, 210) and (200, 50, 210) corresponding to the extreme values 

of combined standard uncertainty, are given in Tables 1 and 2 respectively. 

The uncertainty budget in Table 1 shows that in the case of point S being located over the 

characteristic point of the datum feature only one non-zero component occurs in the budget 

with weight factor equal 1 corresponding to the distance of point S from the datum plane.  

Table 1. Uncertainty budget for point S(200, 350, 210). 

Component xi, mm 
𝜕𝑙

𝜕𝑥𝑖
  uxi, m 

𝜕𝑙

𝜕𝑥𝑖
𝑢𝑥𝑖, m 

cs1 0 0 0.67 0 

cs2 0 0 0.67 0 

cs3 200 1 0.93 0.93 

ca1 150 0 0.87 0 

ca2 300 0 1.07 0 

ca3 0 0 0.67 0 

cb1 -150 0 0.87 0 

cb2 300 0 1.07 0 

cb3 0 0 0.67 0 

   u =  0.93 

 

In the uncertainty budget for the location of point S corresponding to the largest value of the 

combined uncertainty (Table 2) there are 2 non-zero components. One of the components, with 

a weight of 1, corresponds to the distance of point S from the datum plane. The second non-

zero uncertainty component, corresponding to the difference of z coordinates of the 

characteristic points of the datum plane, occurs in the budget with the weight factor of 0.5, 

which corresponds to the proportion of component of distance of point S from the datum plane 

edge (as1 = 150 mm) to the width of the datum (ab1 = 300 mm). 

Table 2. Uncertainty budget for point S(200, 50, 210) (only non-zero elements are shown). 

Component xi, mm 
𝜕𝑙

𝜕𝑥𝑖
 uxi, m 

𝜕𝑙

𝜕𝑥𝑖
𝑢𝑥𝑖, m 

as3 200 1 0.93 0.93 

ab3 0 -0.5 0.67 0.33 

   u = 0.99 

 

In order to analyse how the measurement uncertainty is affected by the dimensions of the 

datum, the calculations were repeated for cases when its dimensions are smaller (side length 

50 mm) and larger (side length 500 mm). The resulting uncertainty remained the same, u = 

0.99 µm. 
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The influence of the distance of point S from the datum was also analysed. The dependence 

of the measurement uncertainty of position deviation on the distance of the toleranced feature 

from the datum, for distances in the range (0-500) mm, is shown in Fig. 8. 

 

 

Fig. 8. The uncertainty of measurement of distance between a point and a plane. 

The dependence is not exactly but practically linear because, as follows from the analyses 

above, it is the geometric sum of two components: one component linearly increasing with 

change of the distance between the point and the datum and a constant component of a 

significantly smaller value. 

The analyses above are valid also for the position of the axis and the position of the plane in 

regard to the datum plane. 

5. Uncertainty of flatness measurement 

Fig. 9 depicts the measurement model of flatness in case of convex or concave flatness 

deviation.  

 

Fig. 9. Example of a specification and measurement model of flatness deviation: a) example of specification with 

characteristic points, b) model for uncertainty evaluation. 

The tolerance zone according to ISO 1101 is limited by a pair of parallel planes. The flatness 

deviation FLT is the smallest distance between the mentioned pair of planes covering all the 

actual points of the toleranced plane, i.e. value of distance l of point S from plane ABC: 

 𝐹𝐿𝑇 = 𝑙. (29) 

The standard uncertainty of flatness measurement uFLT is therefore equal to the uncertainty 

of measurement of the distance of a point from plane ul. 

 𝑢𝐹𝐿𝑇 = 𝑢𝑙. (30) 

In reference to the example presented in Fig. 9, it should be noted that the largest value from 

the extent of the toleranced plane should be taken as the uncertainty of measurement of flatness 

deviation. 

Below an example is analysed of a workpiece in which the toleranced plane is a square with 

a side size of 300 mm. The distribution of points of plane ABC is identical to the example 

concerning position of the point in regard to the plane (Fig. 7), i.e.: A(50, 50, 10), B(350, 50, 
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10), C(200, 350, 10). The nature of the plot of the combined measurement uncertainty, for any 

values of coordinate y of point S (Fig. 10b), is identical to that shown in Fig. 7b (section x = 

200 mm). The uncertainty budget for the location of point S(200, 50, 10.01) which corresponds 

to the largest uncertainty value is presented in Table 3. 

 

a) 

 

b) 

 

Fig. 10. The combined measurement uncertainty of distance between a point and a plane: 

a) surface plot, b) plot of section x = 200 mm. 

Table 3. The uncertainty budget for point S(200, 50, 10,01) (only non-zero components are shown). 

Component xi, mm 
𝜕𝑙

𝜕𝑥𝑖
  uxi, m 

𝜕𝑙

𝜕𝑥𝑖
𝑢𝑥𝑖, m 

as3 0.01 1.00 0.67 0.67 

ab3 0 -0.5 0.67 0.33 

   u =  0.75 

 

In the uncertainty budget for the location of point S corresponding to the largest value of the 

combined uncertainty (Table 3) there are 2 non-zero components. The first component, with a 

weight factor of 1, corresponds to the distance of point S from the datum plane (as3). The second 

non-zero uncertainty component, corresponding to the coordinate difference from the 

characteristic points of the plane (ab3), appears in the budget with a weight factor of 0.5, which 

corresponds to proportion of component of the distance of point S from the edge of the plane 

(as1 = 150 mm) to the width of the plane (ab1 = 300 mm).  

6. Conclusions 

The presented simple model of measurement (distance between a point and a plane defined 

by 3 points) enables uncertainty evaluation for different measuring tasks. In addition to the 

discussed cases of position and flatness deviations the same model can be applied for 

uncertainty evaluation of out-of-plane parallelism of axes. 

The fact that in uncertainty budgets including nine components only two or three have values 

different from zero results from the assumed orientation of the workpieces according to the axes 

of the CMM coordinate system. Otherwise, more non-zero components occur in the uncertainty 

budget, but the combined uncertainty is virtually the same.  

Assuming orientation of the workpiece along the CMM coordinate system axes enables to 

observe the principle of the uncertainty propagation, i.e. what weights values have particular 

uncertainty components in different measuring tasks. 

In the presented examples the largest component that occurs in the uncertainty budget 

corresponds to the measurand which, in the case of position, is the value of the distance between 

the toleranced feature and the datum plane and, in the case of flatness, it is the value of the 

deviation. This component always has its weight value equal to 1. In the case of position, the 
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value of this uncertainty component increases with the increasing distance according to the 

formula for the maximum permissible error of length measurement.  

To estimate the uncertainty of all measurement tasks a significant number of more complex 

models is needed. The models are based not only on the point-plane distance but also on other 

models such as point-straight line, point-point, straight line-straight line as well as others. 

The presented method, thanks to the use of calibration results, takes into account the 

technical state of the CMM and environmental conditions in which it works. It is worth 

mentioning that CMM manufacturers often specify different MPE(E) formulae for different 

ranges of temperature conditions. In this case proper corresponding formulae should be used in 

the evaluation. 

Comparing to the method described in ISO 15530-3, the presented approach is more 

practical, especially for industrial conditions, because it does not require a calibrated artefact 

and a relatively laborious experiment. 

Each new method should be verified. For this purpose, one can use artefacts of a simple form 

e.g. a cylinder square, ring gauges, flatness standards or specially designed artefacts such as 

Multi-Feature-Check [22]. The preliminary evaluation experiments for the presented method 

were carried out with the use of a cylinder square. Currently, extensive experimental research 

is carried out in several research centres across Europe within the EMPIR EURAMET-founded 

joint research project no. 17NRM03 in which the author takes part. 
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