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Abstract: This paper is concerned with coordinate measuring machine (CMM) uncertainty

evaluation, in particular, the uncertainties associated with point clouds and distances de-

rived from the point cloud. The uncertainty evaluation approach is model-based following

the principles of the Guide to the Expression of Uncertainty in Measurement and the

law of the propagation of uncertainty. The paper considers a range of CMM influence

factors and derives an explicit dependence for the point cloud data coordinates on the influ-

ence factors, allowing uncertainties associated with the influence factors to be propagated

through to point cloud uncertainties. The paper describes the use of Gaussian processes to

model kinematic and probing errors using a small number of statistical hyper-parameters.

These models permit an explicit statement of the uncertainty associated with point clouds

and length measurement, enabling the latter to be compared directly with a statement

of the maximum permissible error in length measurement. The uncertainty evaluation

methodology is direct in that it requires no optimisation nor Monte Carlo simulations.

Keywords: coordinate metrology; Gaussian process models; length measurement capability;

uncertainty evaluation

1. Introduction

The primary task of form and tolerance assessment in precision engineering is to

estimate how close a manufactured workpiece is to its ideal geometry, as specified by a

technical drawing or CAD specification. Traditionally, such assessment was made using

hard gauges, but in recent decades, coordinate measuring systems [1] such as coordinate

measuring machines (CMMs) are used extensively in industry for this task. In order for

CMMs to perform this task in a way that supports trustworthiness and interoperability, it

is necessary to establish the traceability of CMM measurement to the metre [2]. As part of

establishing metrological traceability of any measurement system, it is necessary to evaluate

the uncertainties associated with the measurements made [3]. However, the evaluation

of the uncertainty associated with CMM measurement is not straightforward [4]. CMM

measurements are subject to a large range of influence factors including kinematic errors,

probing effects and environmental effects that are difficult to quantify and considerable

effort has to be made in order to provide valid uncertainty estimates associated with a

particular measuring task.

There are two general approaches to evaluating uncertainties associated with a mea-

surement system. The first, often termed measurement systems analysis (MSA), is to

perform a number of experiments in which the influence factors (tool, operator, environ-

ment) are deliberately varied and the variation in the measured results is assessed using

analysis of variance techniques (ANOVA) to quantify the contribution of each influence fac-

tor to the observed variation [5–8]. This approach is sometimes referred to as an a posteriori
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approach in that the uncertainty evaluation can only be performed after the experimental

results. The second approach, as described by the Guide to the Expression of Uncertainty

in Measurement (GUM, [3,9,10], is model-based and relies on an input–output model that

describes the measurement result as a known function of the influence factors. Assigning

means and variances (and distributions) to the influence factors allows, in principle, means

and variances (and distributions) associated with the measurand to be estimated.

The two approaches to uncertainty evaluation associated with coordinate metrology

were addressed by a recent European project Evaluation of uncertainty associated with coor-

dinate metrology—EUCoM; [11]. The first, observation-based approach is based on taking

multiple measurements of the same artefact in a number of positions within the working

volume of the CMM, specifically, five repeat measurements in each of four positions. This

approach is designed to assess the repeatability component of uncertainty, along with

the effect of the geometric errors of the CMM that vary with location within the working

volume. An analysis of variance approach is used to assess the uncertainty contributions

from repeatability and the geometric errors [12,13].

This paper is concerned with a model-based approach to evaluating CMM uncertainty.

The virtual CMM (VCMM) concept, see, e.g., [14–19], is an established example of a

model-based approach for CMM uncertainty evaluation. The VCMM approach involves

(i) a comprehensive model of the CMM behaviour, including the kinematic errors, involving

the order of 100 or more model parameters, (ii) a detailed statistical characterisation of the

model parameters, and (iii) a Monte Carlo approach [9,10] for propagating the uncertainties

associated with the model parameters through to the features derived from the point cloud

data. While the VCMM approach potentially is the method of choice for CMM uncertainty

evaluation, it does suffer from a number of drawbacks: (a) it requires a large number of

parameters to be characterised statistically, often through extensive measurement exercises

involving multiple measurements of artefacts such as ball plates [20–22], (b) the statistical

characterisation of the parameters may not reflect the behaviour of the CMM at later

times or in different environments, and (c) there is considerable computation required to

implement this in software.

The approach described in this paper and developed during the EUCoM project

follows a model-based approach, as used in the VCMM methodology, but with two simpli-

fications. The first exploits the fact that the dependence of the measured point coordinates

xi on the influence factors can be modelled explicitly, which enables the sensitivity with

respect to the influence factors to be determined analytically (to the first order). The sensitiv-

ity of derived features such as distances and differences in distances can also be determined

analytically. The second simplification is to employ approximate models of CMM kine-

matic errors and probing effects based on Gaussian process models [23]. The models are

approximate in the sense that in the absence of information about the actual kinematic or

probing errors, the models describe plausible behaviour of the CMM. We also note that

these models apply to CMMs that are assumed to be error-corrected already so that the

models are required to describe the departure of the CMM’s actual behaviour from its

modelled behaviour rather than account for the kinematic and probing errors themselves.

The models are being used to estimate the uncertainty contributions from the various influ-

ence factors, not to evaluate or estimate (and correct for) the influence factors themselves.

This means that some of the complexity of error correction can be avoided. This second

simplification enables, firstly, the approximate models to be specified by a small number of

statistical parameters and, secondly, the sensitivity of the points coordinates with respect to

the modelled kinematic and probing errors to be calculated using simple formulæ involv-

ing the statistical parameters. Using the approximate models, the uncertainty behaviour of

a CMM for a range of influence factors considered in this paper can be specified in terms of
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the 12 statistical parameters listed in Table 1 and defined in Sections 4 and 5. The methods

described in this paper represent an attempt to achieve a functionality as close as possible to

that of a VCMM capability but using models that are as simple as possible but no simpler.

The GUM differentiates between two methodologies, Type A and Type B, for as-

sociating uncertainties with effects. A Type A approach, usually applied to repeated

measurements, involves a statistical analysis of the data in order to assign an uncertainty,

e.g., derived from the standard deviation of repeated measurements. A Type A approach

can be regarded as an a posteriori approach. According to the GUM, a Type B approach

involves assigning uncertainties to influence factors using other information, such as previ-

ous measurements, manufacturer’s specifications, experience or expert judgement. As such,

a Type B evaluation can be thought of as an a priori approach, as these assignments can be

made before measurements are made.

The approach described in this paper largely follows a Type B approach and addresses

uncertainty evaluation on the basis of information that is available a priori. This prior

information is encoded in the values of statistical hyper-parameters associated with the

various influence factors considered. These parameters can be thought of as specifying a

population of CMMs that are consistent with the parameter values, e.g., CMMs that have

squareness errors in a plausible range, etc. If we draw a number of CMMs from this popula-

tion and use them to perform a particular measurement task, such as measure the length of

a gauge block, we will obtain a range of measurement results. The uncertainty evaluation

methodology described attempts to provide a statistical characterisation, in terms of uncer-

tainties, of what that range would be if we were able to perform these experiments. Many

of the influence factors, such as a squareness error associated with CMM measurements,

can be thought of as systematic in that they persist and stay approximately constant in the

time taken to perform a measurement task. The GUM Type B methodology enables the

uncertainty contribution associated with these systematic effects to be evaluated.

The remainder of this paper is organised as follows. The application of the GUM

methodology to point cloud data is discussed in Section 2. Although this paper is mainly

concerned with CMM length measuring capability, Section 3 discusses CMM length mea-

suring capability in the context of three-dimensional measurement capability, showing that

the length measuring capability can only partially characterise CMM performance. Point

cloud uncertainty evaluation for repeatability effects, probe qualification effects and scale

and squareness effects are discussed in Section 4. Section 5 discusses Gaussian process

models to represent kinematic errors, such as straightness, roll, pitch and yaw, and probing

errors and how these models can be used to evaluate point cloud uncertainties. Section 6

describes how the uncertainties associated with the influence factors propagate through

to uncertainties associated with length measurement. The section also discusses how a

statement of length measuring capability such as maximum permissible error can be used

to guide the assignment of the statistical parameters for the influence factors. Section 7

illustrates the uncertainty evaluation methodologies related to the measurement of a step

gauge artefact. Our concluding remarks are given in Section 8.

Notation

Given coordinate data xi, i = 1, 2, . . . m, then x1:m = (x1, y1, z1, x2, . . . , zm)⊤, i.e., x1:m

represents the 3m × 1 vector of coordinates in the given order. Table 1 gives a summary of

the notation used in this paper relating to CMM influence factors and associated statistical

parameters, while Table 2 gives a summary of the notation relating to variance matrices.



Appl. Sci. 2025, 15, 271 4 of 31

Table 1. Notation and statistical hyper-parameters associated with CMM influence factors; see

Sections 4 and 5.

Symbol Association, Interpretation

MPE Statement of maximum permissible error
A, B Parameters characterising the MPE as a function of distance, A + d/B

R Repeatability
σR Standard deviation associated with repeatability

PQ Probe qualification/location effects
σPQ Standard deviation associated with probe qualification effects

S Scale and squareness effects
σS Standard deviation associated with a global scale effect

σS,a
Standard deviation associated with independent scale effects associated
with each axis

σQ Standard deviation associated with independent squareness effects

ET Geometric location errors (local scale and straightness)

σET
Standard deviation associated with spatially correlated geometric
location errors

λET
Length scale parameter associated with the spatially correlated geometric
location errors

ER Geometric rotation errors (roll, pitch and yaw)

σER
Standard deviation associated with spatially correlated geometric
rotation errors

λER
Length scale parameter associated with the spatially correlated geometric
rotation errors

P Probing effects
σP0

Standard uncertainty in the probe radius
σP Standard deviation associated with spatially correlated probing effects

λP
Length scale parameter associated with the spatially correlated
probing effects

Table 2. Notation associated with the variance matrices; see Section 2. The symbol A|B can be read

as ‘A, given B’.

Symbol Association, Interpretation

VA
variance matrix associated with quantities labelled ‘A’ due to all
influence factors

VA|B
variance matrix associated with quantities labelled ‘A’ due to influence
factors labelled ‘B’

KB variance factor of VB with VB = KBK⊤
B

GA|B
sensitivity matrix of quantities labelled ‘A’ with respect to influence factors
labelled ‘B’

2. The GUM Methodology and CMM Point Clouds

2.1. Summary of the Gum Methodology

The uncertainty evaluation approach described in this paper is based on the methodol-

ogy described in the Guide to the Expression of Uncertainty in Measurement, the GUM, [3],

specifically GUM Supplement 2 [10], which deals with multivariate outputs. A feature

that distinguishes coordinate metrology from other areas of metrology is the fact that the

measurands are usually multivariate, for example, a set of point coordinates, or are derived

from multivariate quantities, e.g., the radius of a cylinder associated with a set of coordi-
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nates. The GUM methodology involves an input–output model in which the measurand(s)

x are described as having a functional relationship x = f (b) on a set of inputs or influence

factors b. Any statistical characterisation of the influence factors b defines a corresponding

statistical characterisation of the outputs x. In particular, if b is associated with a (multivari-

ate) probability distribution with mean b̂ and variance matrix VB, the mean x̂ and variance

matrix VX associated with x are completely defined by the functional relationship x = f (b).

If f is a nonlinear function of b, the mean and variance associated with x may be difficult to

compute exactly but can be approximated by linearising f about b̂. If GX|B is the sensitivity

matrix of x with respect to b,

GX|B(i, j) =
fi

bj
(1)

then the law of propagation of uncertainty (LPU, [24]) states that x̂ and VX are approxi-

mated by

x̂ ≈ f (b̂), VX ≈ GX|BVBG⊤
X|B, (2)

a multivariate version of the well-known formula used in the GUM. The standard un-

certainties u(x) associated with x̂ are given by the square roots of the diagonal elements

of VX .

If the inputs b are associated with a multivariate Gaussian distribution b ∼ N (b̂, VB),

then the distribution associated with x is approximated by N (x̂, VX). Here and elsewhere,

the symbol ∼ can be read as ‘is distributed according to’. The LPU is exact for linear

functions f and, for linear f , if b is associated with a Gaussian distribution, then x is

also associated with the given Gaussian distribution and no approximation is involved.

For measurements that are associated with a number of influence factors, the distribution

N (x̂, VX) is usually a suitable approximation to the true distribution.

The Monte Carlo method (MCM, [9]) for uncertainty evaluation can be used as an

alternative to the the LPU approach. The Monte Carlo approach involves assigning dis-

tributions to the influence factors b, sampling at random bq, q = 1, . . . , M, from these

distributions and then evaluating xq = f (bq). Then, x is estimated by the mean of the xq

and the associated standard uncertainty is given by standard deviation of the sampled

xq. The Monte Carlo method is particularly appropriate if input–output function f is

significantly nonlinear. In coordinate metrology, relative accuracies are of the order of

1 part in 105 so that second order effects are of the order of 1 part in 1010 and can be

ignored in almost all applications. This means that the linearisation of f in Equation (2)

used to propagate the uncertainty information introduces no significant approximation

error. The fact that CMM measurement is subject to a large number of influence factors

also implies, through the central limit theorem, that the distributions associated with the

measurands are approximated well by Gaussian distributions. Since Gaussian distributions

are determined solely by their means and variances, the LPU method provides the essential

information about the measurands.

2.2. A GUM Methodology Applied to CMM Measurement

Applying the GUM methodology to CMM measurement requires the following:

• Specifying the set of factors b that influence the measurand(s) x.

• Establishing the functional relationship x = f (b) that describes how x depends on the

influence factors b,

• Assigning estimates b̂ of the influence factors b and the associated variance matrix VB.

• Evaluating the sensitivity matrix GX|B given by Equation (1) of x with respect to the

influence factors b.
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Once these steps have been completed, the LPU can be used to provide a statistical charac-

terisation of x in terms of x̂ and VX as in Equation (2).

2.3. A General Model of CMM Measurement

A general model of CMM measurement has the form

xi = x∗i + ei + ϵi, ϵi ∈ N (0, σ2
i I) (3)

where xi is the measured coordinates, x∗i is the true point coordinates, ei is a systematic

effect, and ϵi is a random effect, i = 1, . . . , m. In (3) and elsewhere, the symbol ∈ can be

read as ‘is drawn and random from’. The systematic effect ei is taken to be approximately

constant over the duration of a measurement of a part, while the random effect ϵi repre-

sents (a sum of) effects that change over a very short timescale, effectively modelling the

repeatability component of the CMM.

We generalise the model in Equation (3) to cater for the possibility that the measure-

ments may be subject to a number of independent systematic effects that combine additively

to influence the measurement result, e.g.,

xi = x∗i + ei,B + ei,C + ei,D + ϵi. (4)

We assume that the behaviour of the systematic effects can be described by a statistical

model that allows us to calculate (or estimate) the contribution to the variance matrix VX

associated with x1:m from the various effects. We denote by VX|B the variance contribution

arising from e1:m,B, etc. For the model in Equation (4), the variance matrix VX can be

decomposed as

VX = VX|B + VX|C + VX|D + VX|R.

2.4. Propagation of Variances

The law of propagation of uncertainty, the basis of the GUM [3], in its multivari-

ate setting [10] describes how uncertainties associated with the measured coordinates in

Equation (4) can be evaluated on the basis of uncertainties associated with the systematic

and random effects. Suppose effects ei,B = ei(b), i = 1, . . . , m are specified by nB param-

eters b = (b1, . . . , bnB
)⊤ and that a statistical model for b specifies the nB × nB variance

matrix VB associated with b. If GX|B is the 3m × nB sensitivity matrix of x1:m with respect

to b constructed from 3 × nB matrices

GX|B,i =
∂xi

∂b⊤ ,

then

VX|B = GX|BVBG⊤
X|B.

If VB can be factored using an eigenvalue decomposition or Cholesky decomposition [25],

for example, as VB = KBK⊤
B where KB is an nP × pB matrix (usually pB = nB), then VX|B

can be factored as

VX|B = KX|BK⊤
X|B, KX|B = GX|BKB.

The role of the sensitivity matrix GX|B can be explained as follows. If the parameters b

describing the systematic effects are perturbed by ∆b, then the resulting perturbation on

e1:m, and hence, x1:m, is given by ∆x1:m = GX|B∆b to the first order. Often we are interested

in quantities derived from a set of point coordinates. As a consequence of the chain rule in

calculus, if a = (a1, . . . , anA
)⊤ depends on x1:m, and GA,X is the nA × 3m sensitivity matrix
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of a with respect to x1:m; then, the nA × nB sensitivity matrix GA|B of A with respect to

influence factors b is given by

GA|B = GA|XGX|B, (5)

and the nA × nA variance matrix VA|B describing the variance contribution to a arising

from factors b is given by

VA|B = GA|BVBG⊤
A|B = KA|BK⊤

A|B, KA|B = GA|BKB.

If the systematic effects b are perturbed by ∆b, then the derived parameters a are

perturbed by ∆a = GA|B∆b to the first order.

This paper considers the following CMM influence factors:

• Repeatability effects (R)

• Probe qualification/location effects (PQ)

• Scale and squareness effects (S)

• Kinematic/geometrical errors: straightness errors (ET)

• Kinematic/geometrical errors: angular/rotation errors (ER)

• Probing effects: probe radius, errors depending on probing direction (P)

The labels in brackets are used consistently in this paper to denote the corresponding

influence factor. Temperature effects are assumed to arise via changes in scale and machine

geometry. Influence factors arising from software used in coordinate metrology are also

extremely important [26] but are not considered further here.

In this paper, we concentrate on the evaluation point cloud uncertainties involving

sensitivity matrices GX|B and the uncertainties associated with the distance between pairs

of points, a simple but important derived feature. The case of Gaussian-associated features

is considered in [27] and shows how the sensitivity matrices GA|X for parameters associated

with geometric elements with respect to point cloud data can be calculated. Taken together

with the sensitivity matrices GX|B derived in this paper, the sensitivity matrices GA|B can

be evaluated as in Equation (5), allowing the uncertainty contribution to the geometric

element parameters from each of the influence factors to be evaluated, e.g., the uncertainty

associated with the radius of a Gaussian-associated cylinder to squareness errors.

3. Length Measuring Capability and Three-Dimensional
Measurement Capability

3.1. Statistical Characterisation and MPE Statements

The MPE statement says that the difference between estimated distance d̂ derived from

CMM measurement and the true distance d is bounded by a linear function of distance:

|d̂ − d| ≤ A + d/B.

The MPE statement for a particular CMM is usually estimated from multiple mea-

surements of calibrated length artefacts [28]. The MPE statement characterises CMM

(length measuring) behaviour using two parameters A and B. The MPE statement can be

re-interpreted in terms of uncertainty u(d) associated with distance measurement,

Ku(d) ≤ A + d/B, (6)

where K (typically K = 2 or K = 3) ensures that the probability of exceeding an MPE

statement is suitably small. This paper allows us to quantify how the various influence

factors contribute to the maximum permissible error. Conversely, an MPE statement can

also be used to put bounds on the statistical parameters associated with the modelled
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influence factors. For example, a valid MPE statement can be used to bound the size of

scale errors associated with a CMM. These issues are considered in detail in Section 6.8.

Regarding the MPE statement as a quasi-statistical characterisation of the length measuring

capability of a CMM, the MPE statement can also be used to give uncertainty statements

for features derived from distances. Such an approach was also considered in the EUCoM

project [29].

3.2. Length Measuring Capability Does Not Define Three-Dimensional Measurement Capability

While the length measurement capability of a CMM is clearly important, it is also the

case that CMM behaviour is not characterised by length measurement capability alone.

In general, length measurement capability provides only limited information about other

derived features such as cylindricity, etc. In Section 6.3, it is shown how a combination

of independent axes scale effects along with squareness effects provide exactly the same

length measuring capability as that arising from a single global scale effect. Therefore,

it is possible that two CMMs with exactly the same length measurement capability can

perform significantly differently on other measurement tasks, such as the measurement of

a ball plate.

3.3. Measurement with a Single Probe Does Not Define Three-Dimensional
Measurement Capability

It is also true that complete knowledge of CMM behaviour for a single probe is not

sufficient to characterise its behaviour if multiple probes are used. The following example

shows that completely characterising the behaviour of a CMM measurement using a single

probe offset does not characterise CMM measurements using multiple probes. In particular,

experiments to estimate the kinematic errors (see, e.g., [20]) of a CMM must involve multiple

probe offsets.

Suppose a CMM has an error behaviour determined by a roll about each axis that

depends linearly on the length of travel along the axis. This behaviour can be modelled as

x̃ = x + R(κx)p,

where x is the true position of (a fixed point on) the probe assembly, p is the probe offset

(from the fixed point), and x̃ is the CMM coordinate measurements (scale readings), R is

the linearised rotation matrix corresponding to the roll about each axis given by

R(x) =







1 −z y

z 1 −x

−y x 1






,

and κ ≈ 0 is a parameter determining the rate of roll. Then

x̃ = x + R(κx)p = x + p + κx × p = R(−κp)x + p, (7)

where x × p is the vector cross-product of x with p. The relationship Equation (7) shows

that measurements of an artefact using a CMM with isotropic axis roll, i.e., having the same

rate κ of roll along each axis, are the exact same as those of the same artefact rotated by

R(−κp) by a CMM with no axis roll (to first order). This equivalence means that, irrespec-

tive of measurement strategy and calibration information, a CMM cannot be completely

characterised from the multiple measurements of calibrated artefacts such as ball plates

and step gauges unless measurements are taken of the same artefact in the same position

using more than one probe offset. In general, at least three probe offsets are required; by

analogy, the location of three points are needed to track the position of a moving rigid body.
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The uncertainty evaluation method described in this paper attempts to characterise

fully the three-dimensional nature of CMM measurement with multiple probes.

4. Point Cloud Uncertainty Evaluation: Explicit Models

This section describes models associated with influence factors for which explicit

models can be derived directly, enabling the uncertainties associated with these factors to

be propagated through to point cloud variance matrices using the law of propagation of

uncertainty as in Equation (2).

4.1. Random/Repeatability Component (R)

The simplest model of CMM behaviour is to consider only a random repeatability

component constant throughout the working volume:

xi = x∗i + ϵi, ϵi ∈ N (0, σ2
R I). (8)

This model has only one statistical (hyper-)parameter, σR. The variance matrix VX

associated with a set of measured coordinates xI is simply

VX = VR = σ2
R I = D2

R, DR = σR I,

where I represents the 3m × 3m identity matrix with ones on the diagonal and zeros

elsewhere. Despite its simplicity, this model is useful to determine how the uncertainties as-

sociated with geometric features depend on representative estimates of the CMM accuracy,

as represented by σR.

4.2. Probe Qualification Effects (Pq)

For error models with an explicit dependence on the probe offset pk, the fact that the

probe configuration geometry is usually determined in probe qualification experiments [30]

means that there will be uncertainties associated with estimates of the offsets. If xi is a

measurement using the kth probe, then the uncertainty contribution arising from the probe

qualification can be modelled as

xi = x∗i + pk + ePQ,k + ϵi, ePQ,k ∈ N (0, σ2
PQ,k I), (9)

where pk is the calibrated probe offset vector for the kth probe, and ePQ,k models the

difference between the actual probe offset and its calibrated value, k = 1, . . . , nP. (Model

Equation (8) can be regarded as a special case in which the probe offset is p = 0 and is

known exactly.) An important feature of the model is that all measurements with the

kth probe are associated with the same systematic effect ePQ,k. The variance contribution

associated with probe qualification is given by

VX|PQ = GX|PQVPQG⊤
X|PQ

where VX|PQ is the 3nP × 3nP variance matrix associated with the systematic effects ePQ,k,

and GX|PQ is the 3m × 3nP sensitivity matrix. The variance matrix VPQ is a diagonal matrix

with the 3 × 3 matrix σ2
PQ,k I in the kth diagonal block. If the ith measurement is associated

with the kth probe, then

GX|PQ(3i − 2 : 3i, 3k − 2 : 3k) = I

the 3 × 3 identity matrix, and all other elements in these three rows are zero.
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4.3. Scale and Squareness Effects (S)

From practical experience, it is well known that scale and squareness effects are a

major component of CMM behaviour. Scale and squareness effects are special cases of a

class of models in which the systematic effects in Equation (3) are taken to be functions

ei = e(xi, b) of location x and additional parameters b = (b1, . . . , bp)⊤ that model some

aspect of CMM behaviour.

The model below incorporates scale effects and three squareness effects through

xi = B(b)x∗i , (10)

where

B(b) =







(1 + baa + bxx) bxy bxz

0 (1 + baa + byy) byz

0 0 (1 + baa + bzz)







depends on effects b = (baa, bxx, byy, bzz, bxy, bxz, byz)⊤. (The model as it stands assumes

the slightly unrealistic case of a zero probe offset). The term baa models a global scale

effect, while bxx, byy and bzz model scale effects for each axis and bxy, bxz and byz model the

squareness effects. The 3m × 7 sensitivity matrix GX|S for this model is assembled from

3 × 7 matrices of the form

G(x∗i ) =







x∗i x∗i 0 0 y∗i z∗i 0

y∗i 0 y∗i 0 0 0 z∗i
z∗i 0 0 z∗i 0 0 0






. (11)

In practice, x∗i is unknown but can be approximated accurately by the measured

coordinate xi, and the sensitivity matrix is approximated by

Gi = G(xi) =







xi xi 0 0 yi zi 0

yi 0 yi 0 0 0 zi

zi 0 0 zi 0 0 0






. (12)

The model is completed by specifying the variance matrix VB associated with the scale

and squareness effects, e.g.,

VB =



























σ2
S 0 0 0 0 0 0

0 σ2
S,x 0 0 0 0 0

0 0 σ2
S,y 0 0 0 0

0 0 0 σ2
S,z 0 0 0

0 0 0 0 σ2
Q 0 0

0 0 0 0 0 σ2
Q 0

0 0 0 0 0 0 σ2
Q



























. (13)

If we assume that the individual axis scale effects are associated with the same variance

so that σ2
S,x = σ2

S,y = σ2
S,z = σ2

S,a, the model is associated with four statistical hyper-

parameters σ = (σS, σS,a, σQ, σR)
⊤. Given a data point xi, the variance matrix Vxi

= Vxi
(σ),

due to scale and squareness effects, is given by

Vxi
= σ2

Sxix
⊤
i +







x2
i σ2

S,a + (y2
i + z2

i )σ
2
Q 0 0

0 y2
i σ2

S,a + z2
i σ2

Q 0

0 0 z2
i σ2

S,a






.
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For a working volume of [−L, L]3, the variance associated with x-coordinate point

xL = (L, L, L)⊤ is L2(σ2
S + σ2

S,a + 2σ2
Q), the maximum variance associated with any coordi-

nate in the working volume. This maximum can be compared with statements of maximum

permissible error. Over modest working volumes for this model, the variance matrix VX|S
associated with a set of coordinates is given by

VX|S = GX|SVSG⊤
X|S, (14)

where GX|S is the 3m × 7 sensitivity matrix constructed from Gi, defined as in Equation (12),

and VS typically has the form in Equation (13).

For measurements involving multiple probe offsets pk, k = 1, . . . , nP, the measured

coordinates xi are related to the true point coordinates x∗i through a model of the form

xi = B(b)x∗i + pk(i).

For this model, the sensitivity of xi with respect to b is approximated by

Gi = G(xi − pk(i))

with G defined as in Equation (11).

In two dimensions, the model has the form

xi =

[

(1 + baa + bxx) bxy

0 (1 + baa + byy)

]

x∗i , (15)

depending on effects b = (baa, bxx, byy, bxy)⊤. The 2m × 4 sensitivity matrix GX|B for this

model is assembled from 2 × 4 matrices of the form

Gi =

[

xi xi 0 yi

yi 0 yi 0

]

, (16)

variance matrix VB associated with the scale and squareness effects typically of the form

VB =











σ2
S 0 0 0

0 σ2
S,x 0 0

0 0 σ2
S,y 0

0 0 0 σ2
Q











. (17)

5. Point Cloud Uncertainty Evaluation: Gaussian Process Error Models

This section considers approximate models for kinematic errors and probing errors

based on Gaussian process error models [31,32].

5.1. Model Involving 18 Kinematic Errors

The standard kinematic error model for a CMM [21,33] involves first the specification

of 6 error functions associated with the 6 degrees of freedom motion of a rigid body along

an axis, e.g., (exx(x), exy, exz(x), rxx(x), rxy(x), rxz(x))⊤, where exx models the scale error

along the axis; exy the straightness error in the xy-plane; and rxx is the rotation about

the x-axis, in this case, the roll; rxy(x) is rotation about the y-axis (pitch); and rxz(x) is

rotation about the z-axis (yaw). Thus there is a scale error function, two straightness

functions and three rotation functions corresponding to roll, pitch and yaw. There are

6 such functions associated with each axis, 18 in all, sometimes augmented by 3 scalar

squareness parameters, depending on the convention for specifying the straightness error

functions. These error functions are usually modelled in terms of empirical functions such
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as polynomials or splines, the coefficients of which are collectively represented by parameter

vector b. The combined contribution of these 18 + 3 errors to the CMM measurement can

be written as

xi = x∗i + e(x∗i , b) + R(x∗i , b)p, (18)

involving a translation component e(x∗i , b) and a component R(x∗i , b) modelling angular

errors where R is a rotation matrix depending on b and location x∗. The rotational compo-

nent also involves the probe offset p, the vector pointing from the centre of rotation of the

probe housing to the probe tip centre. The explicit dependence on the probe offset allows

different probe configurations to be modelled using the same kinematic error functions.

Estimates of the function coefficients b along with their associated variance matrix can

be determined from repeated measurements of calibrated artefacts such as ball or hole

plates [20,34,35].

If VB is the variance matrix associated with b (derived from a ball plate exercise or

otherwise) and GX|B is the sensitivity matrix of x1:m with respect to b, then the variance

matrix associated with x1:m is given by

VX|B = GX|BVBG⊤
X|B.

The full kinematic error model and its use in generating variance matrices is very much

a specialist undertaking. Typically, each error function is defined in terms of 5 or so

parameters, e.g., polynomial coefficients, so that the complete error model involves the

order of 100 parameters b. Consequently, assigning the associated variance matrix VB

involves estimating the order of 104 elements. Below, we consider kinematic error models

developed in terms of Gaussian process models that can be specified by a small number of

statistical parameters.

5.2. Gaussian Process Models Incorporating Spatial Correlation

Gaussian process (GP) models [32] can be used to develop empirical models of be-

haviour that do not explicitly involve sets of basis functions such as polynomials or

splines. Spatial or temporal correlation associated with data points (xi, ei) takes the form

corr(e, e′) = k(x, x′|σ) where k is a correlation kernel depending on statistical parameters

σ. Often k depends on x and x′ through ∥x − x′∥, e.g.,

cov(e, e′) = k(x, x′|σE, λE) = σ2
E exp{−∥x − x′∥2/λ2

E}. (19)

The strength of the correlation between e and e′ depends on the distance between x

and x′: the closer x is to x′, relative to λ, the stronger the correlation between e and e′.

MPE and Spatial Correlation

The use of spatially correlated error models can be motivated in terms of consequences

of the statement of maximum permissible error (MPE) in measuring length. In measur-

ing length along a single axis, say the x-axis, suppose the basic statistical model for the

measurement of two points is

x1 = x∗1 + e1 + ϵ1, x2 = x∗2 + e2 + ϵ2,

with

e1, e2 ∈ N (0, σ2
E), ϵ1, ϵ2 ∈ N (0, σ2

R).
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The MPE statement implies that the measured length d̂12 is related to the true length

d12 according to

|d̂12 − d12| ≤ A + d12/B.

The MPE implies

|e2 − e1 + ϵ2 − ϵ1| ≤ A + d12/B

so that for 2σ2
R ≤ A2 and for σR ≪ σE, the similarity of e1 and e2 depends on the spatial

separation d12.

We can also use a model of the form

x = x∗ + e(x∗) + ϵ ≈ x∗ + e(x) + ϵ, ϵ ∈ N (0, σ2
R)

where e(x) is an error function with |e(x)| ≤ 2σE that encodes the local scale error. (The

same concept can be applied to straightness errors, etc.). The MPE implies

|e(x2)− e(x1) + ϵ2 − ϵ1| ≤ A + |x2 − x1|/B

so for σR ≪ σE and x1 ̸= x2,

∣

∣

∣

∣

e(x2)− e(x1)

x2 − x1

∣

∣

∣

∣

≤ A

|x2 − x1|
+

1

B
.

In other words, the slope of the error function e(x) cannot be too large, and so some

measure of smoothness on the error function e(x) is required in order for it to be consistent

with the MPE statement. From this point of view, in the MPE statement, A quantifies effects

over short length scales, while d/B controls the size and smoothness of effects over longer

length scales.

Figures 1–3 give examples of spatially correlated error functions generated using the

correlation kernel in Equation (19) with σE = 0.005 mm and λE = 1000 mm, 500 mm,

200 mm and 100 mm. These error functions were evaluated at 200 equally spaced points

0 < xi < 1000. Given x, σE and λE, each error function is a random draw from the

distribution N (0, V(x|σE, λE), where V(x|σE, λE) is the spatially correlated variance matrix.

Each error function was centred so that e(x = 0) = 0, simulating the convention that the

error at x = 0 is zero. Each error function represents plausible behaviour, given the spatial

correlation. The spatial correlation length λE controls the degree of smoothness of the

error functions.

Figure 1. Eight examples of spatially correlated error functions generated using the correlation

kernel in Equation (19) with σE = 0.005 mm and λE = 1000 mm. (The colours associated with the

functions have no significance.)
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Figure 2. As Figure 1 but with λE = 200 mm.

Figure 3. As Figure 1 but with λE = 100 mm.

A GP model can be used to supplement a parametric model e(b) for the systematic

effects [36], e.g., a scale and squareness error model considered in Section 4.3 in which the

role of the GP model is to simulate behaviour not captured by the parametric model, such

as uncorrected kinematic errors. The significant advantage of GP models is that they can

mimic the behaviour of empirical models in a non-parametric way and can be defined

by a small number of statistical parameters. The point cloud variance matrices VX can be

constructed from the point cloud coordinates x1:m, along with a few statistical parameters.

In the models below, the geometric location errors, rotational errors and probing errors can

each be modelled by specifying only two statistical parameters each. By contrast, kinematic

error models, Section 5.1, typically involve 100 or so parameters.

5.3. Gaussian Models for Location Errors (ET)

We can apply a GP model for CMM behaviour, as follows, with

xi = x∗i + ei, (20)

where the systematic effects are spatially (and sometimes temporally) correlated with

the systematic effects ei. In general, the covariance applies only to the same coordinates,
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with the x-, y- and z-coordinates of e mutually independent. The covariance of ex with e′x
could be modelled as

cov(ex, e′x) = k(x, x′|σET,x, λET,x) = σ2
ET,x exp

{

−∥x − x′∥2/λ2
ET,x

}

, (21)

for example, where λET,x defines the length scale for the correlation in the x-coordinate.

Note that in this model, the strength of the correlation in the effects ex depends on the

distance ∥x − x′| in 3D, not the distance along the x-axis.

Let D be the m×m matrix of distances with Dij = ∥xi − xj∥. The variance contribution

VXT from e1:m to the x-coordinates of xi:m is given by

VXT,x = σ2
ET,x exp

{

−D2/λ2
ET,x

}

,

where the calculations associated with D are made element-wise. The contribution to the y-

and z-components are of exactly the same form. The matrix VXT is assembled from VXT,x

VXT,y and VXT,z, with all other elements zeros since we assume that the systematic effects

associated with the x-coordinates are independent from those associated with the y- and

z-coordinates. We assume that the GP model relates to uncorrected kinematic errors that

are not likely to have a significant correlation between axes, even if the kinematic errors

themselves are likely to produce such a correlation. While the GP model assumes there is

no inter-axes correlation, the GP model will model successful behaviour that does have

such a correlation.

If it can be assumed that the systematic effects along each axis have the same behaviour,

so that σET,x = σET,y = σET,z = σET , etc., then the model is specified by two statistical

hyper-parameters σET and λET .

Gaussian Process Models for Location Errors Incorporating Multiple Probes

Suppose that the point cloud x1:m is gathered using multiple probes with offsets pk,

k = 1, . . . , nP. The measured coordinates xi are related to the true point coordinates x∗i
through a model of the form

xi = x∗i + ei + pk(i) + ϵi,

where pk(i) denotes the probe configuration associated with the ith measurement, etc.

For this case, it is important to note that the spatial correlation is dependent on ∥x∗i − x∗j ∥,

not ∥xi − xj∥. For different probe configurations, we have

∥x∗i − x∗j ∥
.
= ∥(xi − pk(i))− (xj − pk(j))∥.

Similar considerations apply to the model for scale and squareness errors with multiple

probe offsets, Section 4.3, and for GP models for rotation errors, Section 5.4, below.

5.4. Gaussian Process Models for Rotation Errors (Er)

The GP models in Section 5.3 used, perhaps, with a simple parametric error model

can simulate a wide range of plausible CMM behaviour, but it relates only to one probing

configuration and does not, without modification, allow us to evaluate the uncertainties

associated with different probe configurations. An extension of the model is to use GP

models to model both the location and rotation errors:

xi = x∗i + ei + R(αi)p + ϵi, (22)

where αi = (αi,x, αi,y, αi,z)
⊤ represents three spatially correlated rotation errors acting on

the probe offset vector p through the rotation matrix
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R(αi) = Rz(αi,z)Ry(αi,y)Rx(αi,x), (23)

the product of rotations about each of the three coordinate axes:

Rx(αx) =







1 0 0

0 cos αx − sin αx

0 sin αx cos αx






, Ry(αy) =







cos αy 0 sin αy

0 1 0

− sin αy 0 cos αy






,

and

Rz(αz) =







cos αz − sin αz 0

sin αz cos αz 0

0 0 1






.

We assume that the rotational effects about one axis are independent from the rotational

effects about the other two axes, but other more general approaches are possible. For mea-

surements involving multiple probes, the degree of spatial correlation associated with αi

and αj depends on

∥x∗i − x∗j ∥
.
= ∥(xi − pk(i))− (xj − pk(j))∥.

If the rotational errors are similar along each axis, then the GP model for the rotational

errors is specified by the two statistical hyper-parameters σER, and λER.

The variance associated with location errors for any coordinate is σ2
ET . If the maximum

probe length is P, then the maximum variance associated with rotational effects for a

coordinate is given by P2σ2
ER. Hence, the maximum variance associated with location and

rotation errors for a coordinate is given by σ2
ET + P2σ2

ER. This maximum can be compared

with statements of maximum permissible error.

We note that if the variance matrix associated with α = (αx, αy, αz)⊤ with α = 0 is Vα,

then the variance matrix Vp associated with R(α)p, with R(α) as in Equation (23), is given

by GVαG⊤, where

G =







0 pz −py

−pz 0 px

py −px 0






, p = (px, py, pz)

⊤. (24)

As for the case of the kinematic error model, the explicit dependence on the probe

offset allows for the uncertainty contributions for different probe configurations to be taken

into account.

If VAR is the 3m × 3m variance matrix associated with α1:m determined from the

correlation kernel (or otherwise), then the variance contribution VXR to the measurements

x1:m is given by

VXR = GXRVARG⊤
XR,

where GXR is a 3m × 3m block-diagonal matrix. If the ith measurement is associated with

the kth probe, then the 3 × 3 ith diagonal is equal to Gk, where Gk is constructed from pk

as in Equation (24). Although the model for the rotation angles about the three axes are

mutually independent, the sensitivity matrices GXR in general will introduce correlation

between the effects applied to the x-, y- and z-coordinates.

If the variances and spatial correlation lengths are the same for each axis and equal to

σ2
ER and λER, respectively, then the variance matrix VXR is constructed from 3 × 3 blocks of

the form

Vij = σ2
ER

(

exp
−d2

ij/λ2
ER

)

Gk(i)G
⊤
k(j), (25)
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where Gk is defined as in Equation (24) involving the two statistical hyper-parameters σER

and λER.

5.5. Gaussian Process Models for Probing Effects (P)

The operation of the probe system will also make a variance contribution. While

the CMM geometric errors are likely to vary smoothly with location, the probing errors

are likely to vary smoothly with probing direction where the probing direction is usu-

ally designed to be normal to the surface being probed. We can augment the model in

Equation (20) to one of the form

xi = x∗i + ei + (eP,0 + eP,i)ni + ϵi, (26)

where eP,0 is a fixed offset representing the uncertainty in the estimate of the probe radius,

eP,i is a spatially correlated systematic effect associated with probing, and ni is the unit nor-

mal probing direction. The correlation between effects eP,i and eP,j depends on the spatial

separation ∥ni − nj∥ if both measurements are made using the same probe. The angular

distance between ni and nj may seem a more natural distance between two unit vectors but

can lead to matrices that are not positive (semi-)definite, i.e., they have negative eigenvalues

and are therefore not admissible as variance matrices. Similar issues arise in applying GP

models on other surfaces such as a cylinder. There are strong constraints on measures of

distance that can be used to specify spatial correlation; see, e.g., [37]. Using the Euclidean

distance, i.e., the distance in 3-dimensions, always leads to admissible variance matrices.

We assume that the probing effects associated with different probes are statistically

independent (although there may be situations where some statistical dependence would

be expected). We assume that eP,0 is associated with variance σ2
P0

and eP,i with variance σ2
P

and length scale parameter λP. If VDP is given by

VDP(i, j) = σ2
P0
+ σ2

Pe
−d2

P,ij/λ2
P , dP,ij = ∥nj − ni∥, (27)

then the variance contribution VXP associated with probing effects is given by

VXP = NVDPN⊤

where N is the 3m × m block diagonal matrix with ni in the ith diagonal block.

5.6. Combining Effects

We can write the point cloud variance matrix VX incorporating all the effects consid-

ered above as

VX = VXT + VXR + VXP + GX|PQVPQG⊤
X|PQ + GX|SVSG⊤

X|S + VR, (28)

where the first three variance matrices on the right hand side are derived from spatially

correlated location, rotation and probing effects and the second three are the contributions

from probe qualification effects, scale and squareness effects and independent random

effects, respectively. For some cases, not all effects need to be considered. For example,

for measurements using a single probe, rotational effects and probe qualification effects

need not be calculated. While the model does have some degree of complexity, all the

variance matrices can be calculated using direct calculations based on, for example, the point

coordinates, the distances between points, etc. All calculations have been implemented in

spreadsheets, for example.
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If GA|X is the sensitivity matrix associated with a feature vector a with respect to

coordinates x1:m, then the variance matrix VA associated with a can also be decomposed as

VA =VA|XT + VA|XR + VA|XP + ...

GA|PQVPQG⊤
A|PQ + GA|SVBG⊤

A|S + GA|XVRG⊤
A|X ,

where VA|XT = GA|XVXTG⊤
A|X, etc., and GA|S = GA|XGX|S, etc. Thus, GA|PQVPQG⊤

A|PQ
is

the variance contribution to VA arising from probe qualification effects, for example.

The uncertainty contributions to u(a) from each of the influence factors can also

be evaluated:

u2(a) = u2
ET(a) + u2

ER(a) + u2
P(a) + u2

PQ(a) + u2
S(a) + u2

R(a),

where u2
ET(a) is the set of diagonal elements of VA|XT , etc.

6. Uncertainties Associated with Distances Derived from Point Clouds

This section considers how uncertainties associated with a point cloud can be propa-

gated through to the uncertainties associated with the distance between pairs of points.

If a model determines the point cloud matrices VX(σ) associated with xi:m in terms of

statistical parameters σ, then for any pair of points xi and xj, we can calculate the variance

associated with the distance dij according to

u2(dij) =

[

nij

−nij

]⊤
Vij

[

nij

−nij

]

, nij =
1

dij
(xi − xj) (29)

where Vij is the 6 × 6 variance matrix formed from the 3i − 2 : 3ith and 3j − 2 : 3jth rows

and columns of VX. The uncertainty contribution from each of the influence factors can

also be derived from the variance decomposition in Equation (28):

u2(dij) = u2
ET(dij) + u2

ER(dij) + u2
P(dij) + u2

PQ(dij) + u2
S(dij) + u2

R(dij). (30)

Often we are interested in the difference in distances, e.g., in comparing the distance

associated with a test artefact with that associated with a calibrated reference artefact.

Differences in distances also come into the impact of CMM uncertainties in form errors,

e.g., the uncertainties associated with the difference in two diameters of a spherical or

cylindrical artefact. Using the same notation,

u2(dij − drs) =











nij

−nij

−nrs

nrs











⊤

Vijrs











nij

−nij

−nrs

nrs











,

where Vijrs is the 12 × 12 variance matrix formed from relevant rows and columns of VX .

6.1. Distance Measurement: Uncertainty Contribution Associated with Random Effects

If VX = σ2
R I, then

u2(dij) = 2σ2
R.

If dij = ∥xj − xi∥ and drs = ∥xs − xr∥, then

u2(dij − drs) = 4σ2
R.
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Note that these uncertainties depend only on σR and are independent of location and

separation of the points.

6.2. Distance Measurement: Uncertainty Contribution from Probe Qualification Effects

We assume that probe qualification effects are modelled as in Section 4.2:

ePQ,k ∈ N (0, σ2
PQ,k I).

If xi and xj are measured using the same probe, then the uncertainty contribution to

the distance dij from probe qualification effects is zero. Otherwise,

u2(dij) = σ2
PQ,k(i) + σ2

PQ,k(j).

The uncertainty contribution associated with dij − drs arises from the term

(ek(i) − ek(j))
⊤nij − (ek(r) − ek(s))

⊤nrs.

If k(i) = k(j) and k(r) = k(s), then u2(dij − drs) = 0. If k(r) = k(s) but k(i) ̸= k(j),

then

u2(dij − drs) = u2(dij) = σ2
PQ,k(i) + σ2

PQ,k(j).

If k(i) = k(r) and k(j) = k(s) but k(i) ̸= k(j), then

u2(dij − drs) = (2 − 2n⊤
ij nrs)

(

σ2
PQ,k(i) + σ2

PQ,k(j)

)

,

so that

0 ≤ u2(dij − drs) ≤ 4
(

σ2
PQ,k(i) + σ2

PQ,k(j)

)

,

depending on the angle between nij and nrs. The uncertainty contribution is zero if nij = nrs,

e.g., when two gauge blocks are measured parallel to each other with both left faces

measured by one probe and both right faces by the other. The uncertainty contribution is

maximised when nij = −nrs, e.g., when the left face of one gauge block is measured by

one probe and the left face of a second parallel gauge block is measured by the other probe

with the probes interchanged for the right face. If all four measurements are undertaken by

different probes, then

u2(dij − drs) = u2(dij) + u2(drs) = σ2
PQ,k(i) + σ2

PQ,k(j) + σ2
PQ,k(r) + σ2

PQ,k(s).

6.3. Distance Measurement: Uncertainty Contribution Associated with Scale and
Squareness Effects

We consider scale and squareness model as in Equation (10), involving seven random

effects b = (baa, bxx, byy, bzz, bxy, bxz, byz)⊤. Given two data points xi and xj, let dij =

∥xj − xi∥ and xij = xj − xi, yij = yj − yi and zij = zj − zi. Then the 1 × 7 sensitivity matrix

GD|ij of dij with respect to the scale and squareness effects e is given by

GD|ij =
1

dij

[

d2
ij x2

ij y2
ij z2

ij xijyij xijzij yijzij

]

.

(Strictly, GD|ij is the sensitivity matrix of δij = (xj − xi)
⊤nij where nij = (xj − xi)/dij. We

note that δij is a signed quantity with δij = ±dij). If

baa ∼ N (0, σ2
S), bxx, byy, bzz ∼ N (0, σ2

S,a),

and

bxy, bxz, byz ∼ N (0, σ2
Q).
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then

u2(dij) = σ2
Sd2

ij + σ2
S,aD2

S,a + σ2
QD2

Q, (31)

where

D2
S,a =

1

d2
ij

[

x4
ij + y4

ij + z4
ij

]

,

and

D2
Q =

1

d2
ij

[

x2
ijy

2
ij + x2

ijz
2
ij + y2

ijz
2
ij

]

.

The expression for u2(dij) in Equation (31) shows non-isotropic behaviour in that the

uncertainty depends not only on the distance but also the position of the points xi and xj.

In particular, if xi and xj are aligned with an axis direction, the cross terms xijyij are all zero

along with two of xij, yij and zij. For this case, u(dij) is given by

u2(dij) = (σ2
S + σ2

S,a)d
2
ij,

and does not have a contribution from squareness effects.

If dij = ∥xj − xi∥ and drs = ∥xs − xr∥, then

u2(dij − drs) = σ2
S(dij − drs)

2 + σ2
S,aD2

S,a + σ2
QD2

Q,

where

D2
S,a =

(

x2
ij

dij
− x2

rs

drs

)2

+

(

y2
ij

dij
− y2

rs

drs

)2

+

(

z2
ij

dij
− z2

rs

drs

)2

and D2
Q =

(

xijyij

dij
− xrsyrs

drs

)2

+

(

xijzij

dij
− xrszrs

drs

)2

+

(

yijzij

dij
− yrszrs

drs

)2

.

For example, if x1 and x2 and x3 and x4 are the end points of diameters with d12 =

d34 = d, and x2 − x1 is parallel to the x-axis and x4 − x3 parallel to the y-axis, then u2(d12 −
d34) = 2d2σ2

S,a. By contrast, if the four points are rotated by 45◦, then u2(d12 − d34) = σ2
Qd2.

If x2 − x1 is parallel to x4 − x3 and d12 = d34 = d, then u2(d12 − d34) = 0, showing that scale

and squareness effects make no significant contribution to the uncertainty in calibrating a

test length standard against a reference length standard of nominally the same length if the

two standards are aligned parallel to each other.

Two Scale and Squareness Models with the Same Distance Measurement Behaviour

From the expressions for u2(dij) in Equation (31), we note that if σ2
Q = 2σ2

S,a = τ2,

say, then

σ2
S,aD2

S,a + σ2
QD2

Q =
1

d2
ij

τ2d4
ij = τ2d2

ij,

and so

u2(dij) =
(

σ2
S + τ2

)

d2
ij.

Thus, if σ2
Q = 2σ2

S,a = τ2, then the uncertainty associated with the measurement of any

distance is exactly the same as for a CMM that has only a single global scale effect with

σ̃2
S = σ2

S + τ2. While the measurement of distance has exactly the same behaviour, the mea-

surement of other features could be quite different. For example, a global scale effect will

have little contribution to the measurement of form error of a sphere, while any squareness

effect will have a contribution.
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This example also shows that it is not possible to characterise the uncertainty contribu-

tion of a CMM measurement purely on the basis of an MPE statement.

6.4. Distance Measurement: Uncertainty Contribution from Spatially Correlated Location Effects

See Section 5.3. Suppose that

xi = x∗i + ei, xj = x∗j + ej,

where ei and ej are correlated effects. Suppose the x-components of the correlated effects

are such that

ei,x, ej,x ∼ N (0, σ2
x),

and the coefficient of correlation for these two effects is ρij,x, and the y- and z-components

are similarly distributed. Assuming that the x-, y- and z-components are mutually indepen-

dent, then

u2(dij) =
2

d2
ij

(

x2
ijσ

2
x(1 − ρij,x) + y2

ijσ
2
y (1 − ρij,y) + z2

ijσ
2
z (1 − ρij,z)

)

.

(Here xij = xj − xi, etc., as before). If the correlation is described in terms of a

correlation kernel as in Equation (21), then ρij,x = e
−d2

ij/λ2
x . If the correlation behaviour is

the same in each axis with σx = σy = σz = σET and ρij,x = ρij,y = ρij,z = ρij = e
−d2

ij/λ2
ET ,

then

u2(dij) = 2σ2
ET

(

1 − e
−d2

ij/λ2
ET

)

.

Let r = dij/λET . Then

1 − e
−d2

ij/λ2
ET = 1 −

{

1 − r2 +
r4

2!
− r6

3!
+ · · ·

}

,

= r2 − r4

2!
+

r6

3!
− · · ·

If λET is much greater than dij, then e−r2
is close to 1 and the uncertainty is the

distance close to zero. For this case, the effects ei ≈ ej act like a fixed offset associated

with the measurements (similar to a probe qualification effect) and do not contribute to the

uncertainty associated with the distance. For dij somewhat less than λET , the term on the

right above is dominated by the first term r2 so that

u2(dij) ≈ 2σ2
ET

d2
ij

λ2
ET

.

In this case, the uncertainty associated with dij is approximately proportional to dij,

showing that the correlated effects behave somewhat like a scale effect. If dij is much greater

then λET , the e
−d2

ij/λ2
ET ≈ 0 and

u2(dij) ≈ 2σ2
ET .

For this case the correlated effects behave more like independent random effects.

Figures 1–3 also give insight into the dependence of uncertainties associated with dis-

tances on spatial correlation length.

We now evaluate the uncertainty u(dij − drs) in the difference in two distances asso-

ciated with four points associated with an isotropic spatial correlation model defined by
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statistical parameters σET and length scale parameter λET . Let nij be the unit normal point

in the direction xj − xi, and let nrs be defined similarly. Then,

u2(dij − drs) = σ2
ET g⊤VN g, g = (1,−1,−1, 1)⊤,

with

VN =















1 e
−d2

ij/λ2
ET ce−d2

ir/λ2
ET ce−d2

is/λ2
ET

e
−d2

ij/λ2
ET 1 ce

−d2
jr/λ2

ET ce
−d2

js/λ2
ET

ce−d2
ir/λ2

ET ce
−d2

jr/λ2
ET 1 e−d2

rs/λ2
ET

ce−d2
is/λ2

ET ce
−d2

js/λ2
ET e−d2

rs/λ2
ET 1















,

where c = n⊤
ij nrs, the cosine of the angle between the two normal vectors. Performing the

matrix–vector multiplications, we end up with

u2(dij − drs) = 2σ2
ET

(

2 − eij − ers + c(ejr + eis − eir − ejs)
)

,

where eij = e
−d2

ij/λ2
ET , etc.

Example: comparison of two gauge blocks. Suppose two gauge blocks of nominally

the sample length are measured side by side, parallel to each other, with x1 and x2 as the

measured points on the end faces of the first gauge block and x3 and x4 those corresponding

to the second gauge block. For this case, d12 ≈ d34 = D, say, d13 ≈ d24 = d, say, and n12 ≈
n34 so that c ≈ 1. If d is much smaller than D, then d14 ≈ d23 ≈ d12, and

u2(d12 − d34) ≈ 4σ2
ET

(

1 − e−d2/λ2
ET

)

.

This uncertainty can be thought of as a quantification of the Abbe contribution to

the uncertainty due to the fact that the measuring lines associated with the two gauge

blocks are displaced by d from each other. For d much smaller than λET , this contribution

is negligible.

6.5. Distance Measurement: Uncertainty Contribution from Spatially Correlated Rotation Effects

See Section 5.4. We assume the spatial correlation is isotropic, i.e., the same for each

axis, and specified by variance σ2
ER and length scale parameter λER. If xi is measured using

probe offset pk(i), etc., nij is the unit vector pointing from xi to xj, and Gi and Gj are the

sensitivity matrices associated with R(α)pk(i) and R(α)pk(j) with respect to α evaluated at

α = 0, as in Equation (24), then the uncertainty u(dij) associated with the distance dij due

to rotation effects is given by

u2(dij) = σ2
ER

(

m⊤
i mi + m⊤

j mj − 2(m⊤
i mj)e

−d2
ij/λ2

ER

)

,

where mi = Ginij, etc. If the same probe is used for both measurements, then pi = pj = p,

say, mi = mj = m, say, and

u2(dij) = 2σ2
ERm⊤m

(

1 − e
−d2

ij/λ2
ER

)

.

For this latter case, the quantity m⊤m depends on the relationship between nij and p. If p

is in the same direction as nij (unlikely to be so in practice) m = 0. If p is orthogonal to nij

(as is often the case), then m⊤m = p⊤p, then for the measurement of a distance using the

same probe,

u(dij) ≤
√

2σER∥p∥
(

1 − e
−d2

ij/λ2
ER

)1/2
.

More generally,
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u(dij) ≤
√

2σERP
(

1 − e
−d2

ij/λ2
ER

)1/2
≤

√
2σERP,

where P is the length of the longest probe involved.

6.6. Distance Measurement: Uncertainty Contribution from Spatially Correlated Probing Effects (P)

See Section 5.5. We assume the spatial correlation is isotropic and specified by variance

σ2
P and length scale parameter λP. The spatial correlation parameter λP relates to chordal

distance on the unit sphere and is usually chosen so that two points that are diametrically

opposed on the unit sphere are associated with independent effects, i.e., λP is significantly

smaller than 1. In general, a value of λP = 1/2 is appropriate. Suppose xi is measured in

probing direction ni using probe offset pk(i) with associated statistical parameters σP0,k(i),

σP,k(i) and λP,k(i), etc., and nij is the unit vector pointing from xi to xj. For the case of

different probes, the model in Section 5.5 assumes that the probing effects are independent

so that

u2(dij) = σ2
P0,k(i) + σ2

P0,k(j) + σ2
P,k(i) + σ2

P,k(j).

For pi = pj = p, etc.,

u2(dij) = σ2
P0
(o2

i + o2
j − 2oioj)

+ σ2
P

(

o2
i + o2

j − 2oioje
−d2

P,ij/λ2
P

)

,

where

oi = n⊤
i nij, oj = n⊤

j nij, dP,ij = ∥nj − ni∥.

It is usually the case that ni and nj are aligned with nij. In this case, oi, oj = ±1, and

we have

u2(dij) = 4σ2
P0
+ 2σ2

P, ni = −nj, u2(dij) = 0, ni = nj. (32)

The relationships above in Equation (32) show how the model accounts for the dif-

ferences between uni-directional and bi-directional probing. For example, in measuring

a step gauge, the probing effects do not contribute to the uncertainties associated with

the distances between left-facing faces or between right-facing faces but contribute to the

uncertainties in distances between left- and right-facing faces. In the comparison of two

gauge blocks sitting side by side in which all four faces (two left-, two right-facing) are

measured with the same probe, then the uncertainty contributions are such that

u2(d12) = u2(d34) = 4σ2
P0
+ 2σ2

P, u2(d12 − d34) = 0.

6.7. Summary: Uncertainties Associated with Distances Due to the Influence Factors

In the sections above, we have considered the uncertainty contributions to distances

due to a number of effects. In this section we summarise these results, giving typical

uncertainty contributions in terms of a small number of statistical parameters.

Random effects (R). Statistical parameter σR.

u2
R(dij) = 2σ2

R.

Probe qualification effects (PQ). Statistical parameters σPQ representing the maximum

probe qualification uncertainty. For distance measurements using the same probe, the con-

tribution is zero. Otherwise,

u2
PQ(dij) ≤ 2σ2

PQ.

Scale and squareness effects (S). Statistical parameters σS, σS,a and σQ. For this model,

the uncertainty in distance is approximated by
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u2
S(dij) ≈

(

σ2
S + σ2

S,a + σ2
Q

)

d2
ij.

If the measurements are aligned with an axis, the squareness component, represented

by σQ, makes no contribution.

Spatially correlated location effects (ET). Statistical parameters σET and λET .

u2
ET(dij) = 2σ2

ET

(

1 − e
−d2

ij/λ2
ET

)

≤ 2σ2
ET .

Spatially correlated rotation effects (ER). Statistical parameters σER, λER and the maximum

probe length P.

u2
ER(dij) ≤ 2σ2

ERP2
(

1 − e
−d2

ij/λ2
ER

)

≤ 2σ2
ERP2.

Spatially correlated probing effects (P). Statistical parameters σP0
, σP, and λP:

u2
P(dij) ≤ 4σ2

P0
+ 2σ2

P.

Putting these formulæ together, we derive a summary estimate of the uncertainty u(d)

associated with length measurement given by

u2(d) = σ2
A +

(

σ2
S + σ2

S,a + σ2
Q

)

d2 + 2σ2
ET

(

1 − e−d2/λ2
ET

)

+ 2σ2
ERP2

(

1 − e−d2/λ2
ER

)

, (33)

with

σ2
A = 2

(

σ2
R + σ2

PQ + σ2
P + 2σ2

P0

)

. (34)

In Equation (33), it is seen that u(d) is the sum of four components, the first indepen-

dent of distance, the second directly proportional to distance, while the other two terms

depend on the ratio of distance relative to a spatial correlation length.

6.8. Plausible Values for Statistical Parameters Based on an MPE Statement

The analysis above shows how the uncertainty u(d) associated with length mea-

surement depends on the various influence factors considered. The analysis provides an

estimate of u(d) in terms of the statistical hyper-parameters assigned to the influence factors.

A statement of maximum permissible error can be used to derive plausible values on these

statistical hyper-parameters or, at a minimum, provide upper bounds for them. Suppose

the MPE statement is |d − d∗| ≤ A + d∗/B. We can interpret this statement statistically as

Ku(d) ≤ A + d/B,

where K is, say, 2 or 3. From the summary information given in Section 6.7 above and

specifically Equation (33), for dij ≈ 0, the uncertainty u(dij) is such that u2(dij) = σ2
A which

implies

σ2
A = 2

(

σ2
R + σ2

PQ + σ2
P + 2σ2

P0

)

≤ A2/K2 (35)

in order to conform to the MPE statement. This inequality relates σA directly to A and puts

constraints on the size of σA defined above and, therefore, on the statistical parameters σR,

σPQ, σP0
and σP. Similarly, for larger distances, the MPE constraint implies

σ2
S + σ2

S,a + σ2
Q ≤ u2(d)

d2
≤ 1

d2K2
(A + d/B)2 ≈ 1

K2B2
,

so that the scale and squareness hyper-parameters are effectively bounded by 1/(KB).

The relationship
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2σ2
ET

(

1 − e−d2/λ2
ET

)

+ 2σ2
ERP2

(

1 − e−d2/λ2
ER

)

≤ u2(d) ≤ 1

K2
(A + d/B)2,

constrains the combined effect of the kinematic errors as specified by σET and σER along

the the spatial correlation lengths λET and λER.

In general, given a summary estimate u(d) of the uncertainty in distance due to the

combined effects, we can evaluate

C(d) =
Ku(d)

A + d/B
. (36)

If C(d) ≤ 1 over the working volume, then the values of the statistical parameters

do not violate the MPE statement. If Cmax = maxd≤Lmax
C(d) is the maximum value of

C(d) over the working volume, then the simple procedure of dividing all the statistical

parameters representing standard deviations, σR, etc., by Cmax will lead to conformance

with the MPE statement.

The MPE statement can be used, along with any other information, expert judgement, etc.,

to guide the assignment of the statistical hyper-parameters. The assignment cannot be unique,

as demonstrated in Section 3, but the MPE can be used to determine a range of plausible values

for the parameters. Making an assignment involves setting a balance between the random

effects, the scale and squareness effects and the translational and rotational effects.

Table 3 gives two examples of MPE statements, labelled MPE1 and MPE2, along with

assignments of values for the statistical hyper-parameters that have been derived to be

consistent with the MPE statements. MPE1 corresponds to a more accurate CMM relative

to MPE2. Graphs of the MPE and uncertainty components associated with distance as a

function of d derived for statistical parameters in Table 3 and expansion factor K = 2 are

shown in Figures 4 and 5. The figures shows that the statistical parameters conform to the

MPE statements. The uncertainty contribution from scale and squareness effects is linear in

d, while the spatially correlated location and rotation effects start off as linear in d but begin

to level off for larger values of d. For both characterisations, the spatial correlation length

scale parameter λER associated with the rotation effects is larger than that λET for the location

effects and the levelling off occurs later for the rotation effects. For MPE2, associated with

shorter spatial correlation lengths, the levelling off occurs earlier than that for MPE1.

Table 3. Two sets of statistical parameters estimated from MPE statements of the form A + d/B.

Effect Parameter Unit MPE1 MPE2

MPE A µm 1.0 3.0
B mm 500 200

Repeatability σR µm 0.20 0.60
Scale, squareness σS 10−6 0.7 2.1

σS,a 10−6 0.7 2.1
σQ 10−6 0.7 2.1

Probe qualification σPQ µm 0.20 0.60

Location σET µm 0.2 0.6
λET mm 200 100.0

Rotation σER µrad 4.0 12.0
λER mm 400 200

P mm 50 50

Probing σP0
µm 0.10 0.30

σP µm 0.10 0.30
λP 1 0.50 0.50
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Figure 4. Graphs of the MPE and uncertainty of distance components as a function of d. The upper

straight line is A + d/B, the solid line is Ku(d) with u(d) evaluated as in Equation (33). The other

graphs give the uncertainty contributions KuS(d) from scale and squareness effects, dotted straight

line, KuET(d) from spatially correlated location effects, dashed line, and KuER(d) from spatially

correlated rotation effects, dot–dashed line, derived from the statistical parameters in the column

labelled MPE1 in Table 3 and expansion factor K = 2.

Figure 5. As in Figure 4 but derived from the statistical parameters in the column labelled MPE2 in

Table 3.
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7. Numerical Illustration: Measurement of a Step Gauge

The simulations involve characterisations of CMM behaviour based on the two MPE

statements and statistical parameters given in Table 3. The calculations involve simulations

of measurements of a step gauge with 26 steps each of nominal length 10 mm situated at

20 mm intervals along a measuring line. The simulations reported on here involve two sce-

narios. In each scenario, the step gauge is aligned with the x-axis so that measurements are

not sensitive to squareness effects nor scale effects associated with the y- and z-axes.

Scenario I. This (realistic) scenario assumes (i) the 52 step faces are measured with the

same probe with probe offset p = (0.0, 0.0,−20.0)⊤ mm. In this scenario,

the measured distances are not sensitive to probe qualification effects and the

only rotation effect of importance is rotation about the y-axis, i.e., pitch along

the x-axis.

Scenario II. This scenario (used for illustration) assumes (ii) the 26 left-facing faces are

measured with a probe with offset pL = (0.0, 20.0, 0.0)⊤ mm and the 26 right-

facing faces are measured with a probe with offset pR = (0.0,−20.0, 0.0)⊤ mm.

In this scenario, the measured distances are sensitive to probe qualification

effects. The measurements are also sensitive to rotation about the z-axis,

i.e., yaw along both the x- and y-axes.

The associated features derived from the measurements are as follows:

dij The distances between all faces, with dij = ∥xi − xj∥.

dLL,ij The distances between left-facing faces.

dRR,ij The distances between right-facing faces.

dFF,k The estimated length of each step.

The uncertainties associated with these distances have been calculated by evaluating

the variance matrix VX associated with the point cloud xi, i = 1, . . . , m = 52, representing

points on the centre of the 52 step gauge faces. The variance matrix VX is constructed

as in Equation (28), involving the various influence factors. The uncertainties associated

with distances are calculated using Equation (29), decomposed as in Equation (30). These

calculations do not depend on any of the simplifying assumptions used in Section 6 to

derive compact formulæ for uncertainties associated with distances.

Figures 6 and 7 plot the estimated expanded uncertainty Ku(d) with K = 2 associated

with distances derived from measurements of a step gauge under scenario I and scenario II,

respectively, and statistical parameters given in column 4 of Table 3, MPE1, for the different

associated features discussed above. (The graphs corresponding to MPE2 show a similar

behaviour.) The label ‘LL’ relates to distances between left-facing faces, ‘RR’ to distances

between right-facing faces and ‘FF’ to the distances between the step faces for each step.

Also plotted is the MPE function A + d/B (upper straight line).

The two figures show that the uncertainties associated with left-facing faces and right-

facing faces are the same for both scenarios since these distances are not sensitive to probe

qualification effects and the rotation effects are essentially the same. We have assumed

that the rotation errors are isotropic, i.e., the same for each axis so that a pitch about the

x-axis, scenario I, has the same effect as yaw along the x-axis, scenario II, bearing in mind

that each probe offset is of length 20 mm. In both cases, the uncertainties associated with

distances involving both a left- and right-facing face are significantly larger because they

are also are sensitive to probing effects. In the case of scenario II, these distances are also

sensitive to yaw errors along the y-axes.

More insight into the uncertainty behaviour can be found by examining Tables 4 and

5, which give the standard uncertainties (column two) in micrometres associated with the

distances between the first and second, first and 51st and first and 52nd (last) faces of the
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step gauge for scenarios I and I and statistical parameters MPE1, and MPE2. We note the

following from Table 4, scenario I, involving only one probe offset.

• The distance measurements are not sensitive to probe qualification effects.

• Measurements involving left-facing faces only are not sensitive to probing effects as

they both involve the same probing direction.

• The uncertainties associated with scale effects are proportional to the distances,

as would be expected.

• For the short distances, the spatially correlated translation and rotational effects make

a very small uncertainty contribution.

We note the following from Table 5, scenario II, involving two probe offsets.

• Measurements involving left-facing faces only are not sensitive to probe qualification

effects as they only involve one probe offset.

• Measurements involving left-facing faces only are not sensitive to probing effects as

they both involve the same probing direction (as in scenario I).

• The rotational effects are significant for the measurement of the distance between the

first and second face. The measurement of the first face involves one probe offset

while the measurement of the second involves the second probe offset, which means

that the CMM position differs by 40 mm as measured along the y-axis, so that yaw

along the y-axis has an effect. Because the distance along the y-axis is small, 40 mm,

relative to the spatial correlation length, these yaw errors are significantly correlated

but because the two probe offsets are in different directions along the y-axis, these

yaw errors do not cancel but instead have approximately double the effect. Only by

including the relationship between rotational errors and probe offsets in the model,

as described in Section 5.4, is it possible to capture this uncertainty behaviour.

Figure 6. Estimated expanded uncertainty Ku(d) with K = 2 associated with distances derived from

measurements of a step gauge under scenario I and statistical parameters given by the third column of

Table 3, MPE1. The label ‘LL’ relates to distances between left-facing faces, ‘RR’ to distances between

right-facing faces and ‘FF’ to the distances between the step faces for each step. Additionally plotted

is the MPE function A + d/B (upper straight line).
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Figure 7. As Figure 6 but for statistical parameters given by the fourth column of Table 3, MPE2.

Table 4. Standard uncertainties (column three) in micrometres associated with the distances between

the first and second, 51st and 52nd faces for the step gauge for scenario I and statistical parameters

labelled MPE1, first four rows, and MPE2, second four rows, given in columns 4 and 5 of Table 3.

Additionally shown (columns three and above) are the uncertainty contributions from the different

influence factors, also in micrometres.

d/mm u uR uPQ uS uET uER uP

LR 10.00 0.37 0.28 0.00 0.01 0.01 0.00 0.24

LL 20.00 0.28 0.28 0.00 0.02 0.03 0.01 0.00

LL 500.00 0.64 0.28 0.00 0.49 0.28 0.10 0.00

LR 510.00 0.70 0.28 0.00 0.50 0.28 0.10 0.24

LR 10.00 1.13 0.85 0.00 0.03 0.08 0.02 0.73

LL 20.00 0.87 0.85 0.00 0.06 0.17 0.03 0.00

LL 500.00 1.94 0.85 0.00 1.48 0.85 0.34 0.00

LR 510.00 2.10 0.85 0.00 1.51 0.85 0.34 0.73

Table 5. As Table 4 but for scenario II.

d/mm u uR uPQ uS uET uER uP

LR 10.00 0.41 0.28 0.14 0.03 0.06 0.16 0.20
LL 20.00 0.28 0.28 0.00 0.02 0.03 0.01 0.00

LL 500.00 0.64 0.28 0.00 0.49 0.28 0.10 0.00

LR 510.00 0.70 0.28 0.14 0.51 0.28 0.12 0.20

LR 10.00 1.27 0.85 0.42 0.09 0.34 0.47 0.60

LL 20.00 0.87 0.85 0.00 0.06 0.17 0.03 0.00

LL 500.00 1.94 0.85 0.00 1.48 0.85 0.34 0.00

LR 510.00 2.10 0.85 0.42 1.52 0.85 0.34 0.60
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8. Concluding Remarks

This paper has been concerned with the evaluation of uncertainties associated with

point clouds and distances as measured by a CMM. The uncertainty evaluation methodol-

ogy is model-based, following the principles of the GUM and the law of propagation of

uncertainty and has considered a range of influence factors—repeatability effects, probe

qualification effects, scale and squareness effects, kinematic/geometrical errors, and prob-

ing effects. Using plausible models of CMM behaviour for each of these effects, it has

been possible to derive the sensitivities of point clouds and derived distances to the influ-

ence factors and express their contribution to length measurement uncertainty in terms

of straightforward formulæ depending on a small number of statistical hyper-parameters.

The methodology has been illustrated on measurements of a step gauge. The evalua-

tion of the uncertainties requires no Monte Carlo simulations and can be (and has been)

implemented in spreadsheets, for example.

The fact that the uncertainty in length measurement for each of the effects can be

evaluated explicitly means that their contribution to the CMM’s maximum permissible

error (MPE) can be also be evaluated. Conversely, a valid statement of MPE can be used to

constrain the values of the statistical hyper-parameters and derive point cloud uncertainties

that are consistent with the MPE statement.
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