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Abstract: This paper is concerned with the evaluation of the uncertainties associated with Gaussian-
associated features following the GUM methodology. We show how sensitivity matrices necessary
for a GUM uncertainty evaluation can be calculated and how the variance matrices associated with
the feature parameters can be estimated for a range of complete and partial features common in
engineering. Example results are given in tables that allow practitioners to estimate, a priori, the
uncertainties associated with fitted parameters, given a proposed measurement strategy for the
case in which the point-cloud variance matrix is a multiple of the identity matrix. The sensitivity
matrices can be used to evaluate the uncertainties for associated features for more general point-cloud
variance matrices. All the calculations involved are direct and involve no optimization or Monte
Carlo sampling; they can be implemented in spreadsheet software, for example.
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1. Introduction

Coordinate metrology is a key technology supporting the quality infrastructure associ-
ated with manufacturing; see e.g., [1] and the references therein. Coordinate metrology can
be thought of as a two-stage process, the first stage using a coordinate measuring machine
(CMM) to gather coordinate data x1:m = {xi, i = 1, . . . , m}, related to a workpiece surface,
the second extracting a set of parameters (features, characteristics) a = (a1, . . . , an)> from
the data x1:m using software implementing mathematical algorithms, e.g., determining
the parameters associated with the best-fit cylinder to data. The extracted parameters can
then be compared with the workpiece design to assess whether or not the manufactured
workpiece conforms to design within a pre-specified tolerance [2–7]. The evaluation of the
uncertainties associated with geometric features a derived from coordinate data x1:m is also
a two-stage process, the first in which a 3m× 3m variance matrix VX associated with the
coordinate data is evaluated [8–14], the second stage in which the uncertainties associated
with x1:m are propagated through to those for the features a derived from x1:m. This paper
is concerned with the second stage, the evaluation and analysis of the variance matrix VA
for Gaussian-associated features [15–17] determined from a least-squares fit of a geometric
element to coordinate data.

Coordinate metrology is different from many other areas of metrology in that the
measurands are usually multivariate, for example, a set of point coordinates, or are de-
rived from multivariate quantities, e.g., the radius of a cylinder associated with a set of
coordinates. The GUM methodology [18–20] involves an input-output model in which
the measurand(s) a are described as having a functional relationship a = f (x) on a set of
inputs or influence factors x. Any statistical characterization of the influence factors x defines
a corresponding statistical characterization of the outputs a. In particular, if x is associated
with a (multivariate) probability distribution with mean x̂ and variance matrix VX, the
mean â and variance matrix VA associated with a are completely defined by the functional
relationship a = f (x). If f is a nonlinear function of x, the mean and variance associated
with a may be difficult to compute exactly but can be approximated by linearizing f about
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â. If GA|X is the sensitivity matrix (the symbol A|X can be read as ‘A given X’) of a with
respect to x,

GA|X(i, j) =
∂ fi
∂xj

,

then the law of propagation of uncertainty (LPU, [20,21]) states that â and VA are approxi-
mated by

â ≈ f (x̂), VA ≈ GA|XVXG>A|X , (1)

a multivariate version of the well-known formula used in the GUM. The standard uncer-
tainties u(a) associated â are given by the square roots of the diagonal elements of VA. The
key to implementing a GUM approach is the evaluation of the sensitivity matrices GA|X ,
the main subject of this paper. These sensitivity matrices depend on the measurement
strategy as represented by the (nominal) points x1:m being measured and this paper dis-
cusses how GA|X can be calculated for the geometric elements common in engineering. The
uncertainties associated with the features depend mostly on the geometry of the patch of
geometric surface being measured rather than on the precise details of where the measuring
points are located on the patch, so long as the distribution of the points is representative
of the patch. In this paper, we use tools borrowed from Monte Carlo integration [22] to
estimate uncertainties under the assumption that the proposed measurement strategy is
approximately equivalent to a strategy in which a finite set of points is dispersed evenly
over the surface being sampled, enabling the variance matrix to be calculated analytically.
This allows us to estimate uncertainties without knowing the measurement strategy, only
the number of data points and geometry of the area being sampled. The approach is used
to examine the effect of sampling only a portion of a geometric element, an arc of a circle, a
cap of a sphere, etc., and provide asymptotic results for limiting cases, e.g., as the angle of
arc of a circle measured tends to zero. Example uncertainty estimates for different partial
features of circles, spheres, planes, cylinders and cones are given in tables.

The methods described in this paper are all based on deriving the sensitivity matrix
GA|X that is used to construct the variance matrix VA for the derived features a from the
variance matrix VX associated with the point cloud x1:m. For the features involved, the
functional relationship a = f (x1:m) of a on the point cloud is smooth and almost linear
so that the first order approximation of f and the application of the law of propagation
of uncertainty (1) is very effective in estimating uncertainties associated with the derived
features. For features derived according to Chebyshev/minimum zone and related criteria,
the functional relationship is not smooth and the first order approximation of f might not
be fit for purpose. An alternative approach is to use a Monte Carlo sampling approach [19]
generating point-cloud data sets x1:m,q and derived features aq = aq(x1:m,q) for each data
set, q = 1, . . . , M. The variance matrix associated with the sample a1:M is an approximation
to VA. The Monte Carlo approach is the basis of the virtual CMM approach to uncertainty
evaluation [14,23]. Our focus here on features derived according to the least-squares
criterion and avoids the requirement for Monte Carlo sampling approaches.

The remainder of this paper is organized as follows. Section 2 provides some pre-
liminary calculations of sensitivity matrices associated with an axis, e.g., the axis of a
cylinder. Section 3 describes in general how uncertainties associated with point clouds
are propagated through to Gaussian-associated features. Sections 4–8 applies the general
approach to different geometric elements. Each section describes how sensitivity matrices
for least-squares element fitting can be evaluated and how the variance matrices for the
associated features can be approximated, for the case in which the point-cloud variance
matrix VX is a multiple of the identity matrix. Each section also provides an analysis of
how uncertainties associated with partial features behave. A numerical example relating
to establishing a datum location from the measurement of a reference sphere is given in
Section 9. Our concluding remarks are given in Section 10.
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2. Calculations Associated with Axes

Many of the calculations involve the distance to an axis or a plane and we consider
those first.

2.1. Point on an Axis

If x = xA + tAvA, is a point on the axis specified by locating point xA = (xA, yA, zA)
>

and direction vector vA = (uA, vA, wA)
>, then the sensitivity matrix GZ|B of x with respect

to b>A = (x>A , v>A) = (xA, yA, zA, uA, vA, wA)
> is the 3× 6 matrix

GX|BA
=

 1 0 0 tA 0 0
0 1 0 0 tA 0
0 0 1 0 0 tA

.

2.2. Distance from a Point to an Axis

For an axis specified by xA and vA = (uA, vA, wA)
> with ‖vA‖ = 1, the distance from

a point x to the axis is given by

dA(x, bA) = ‖(x− xA)× vA‖, (2)

with

(x− xA)× vA =

 ξ
η
ζ

 =

 (y− yA)wA − (z− zA)vA
(z− zA)uA − (x− xA)wA
(x− xA)vA − (y− yA)uA

.

The 1× 6 sensitivity matrix GDA |BA
of dA = dA(x, b) with respect to b>A = (x>A , v>A) is

given by

G>D|B =
1

dA



ηwA − ζvA
ζuA − ξwA
ξvA − ηuA

η(z− zA)− ζ(y− yA)
ζ(x− xA)− ξ(z− zA)
ξ(y− yA)− η(x− xA)

. (3)

2.3. Distance from a Point to a Plane Orthogonal to an Axis

The distance dP(x, bA) from a point x to the plane (x− xA)
>vA = 0 specified by xA

and vA = (uA, vA, wA)
> with ‖vA‖ = 1, is given by

dP(x, bA) = (x− xA)
>vA. (4)

The 1× 6 sensitivity matrix GDP |BA
of dP = dP(x, b) with respect to b> = (x>A , v>A) is

given by

G>DP |BA
=



−uA
−vA
−wA

x− xA
y− yA
z− zA

. (5)

3. Least-Squares (LS) Feature Assessment

See also, e.g., [24–27]. Suppose u 7→ s(u, a) defines a parametric curve or surface.
The parameters u determine the position of a point on the surface and the parameters
a determine the shape and position of the surface. We assume that set of measured
coordinates, x1:m nominally represent points on such a surface, so that

xi ≈ s(ui, a), (6)
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for some ui and some a. The least-squares (LS) estimates û1:m and â of u1:m and a, respec-
tively, can be found by minimizing

m

∑
i=1

d2(xi, a), d(xi, a) = (xi − s(u∗i , a))>ni, (7)

where u∗i specifies the point s∗i = s(u∗i , a) on the surface closest to xi and ni is the normal
vector at s∗i . The term least-squares orthogonal distance regression (LSODR) is also used
for this type of optimization problem [28,29] as d(xi, a) is the (signed) distance of xi from
the surface s(u, a) measured orthogonally to the surface. For standard geometric elements,
d(x, a) can be evaluated analytically [24]. The geometric elements considered in this paper
are: circle in the xy-plane, plane, sphere, cylinder and cone [15,24]. For more general
surfaces, numerical methods are required [27]. Let J = J(x1:m, a) be the Jacobian matrix
defined by

Jij =
∂d
∂aj

(xi, a).

The optimality conditions for a to minimize the sum of squares in (7) are of the form

J>d = 0, J = J(x1:m, a), di = d(xi, a).

These optimality conditions implicitly define the solution a as function of the data
points x1:m and allow us to evaluate the sensitivity matrix GA|X of a with respect to the data
Section 4.2.4 [30]. If J is the Jacobian matrix and ni are the corresponding surface normals
at the solution û1:m and â then

GA|X = GA|D N>, GA|D = −(J> J)−1 J>, (8)

where N is the 3m× m block diagonal matrix storing the normal vectors ni in the 3× 1
diagonal blocks. The matrix n×m GA|D is the sensitivity matrix of the parameters a with
respect to changes in xi in the direction orthogonal to the fitted surface.

If QR factorization [31] of J is given by

J = QR = [Q1 Q2]

[
R1
0

]
, (9)

where Q is orthogonal and R1 is upper-triangular, then

GA|D = −R−1
1 Q>1 .

If VX is the variance matrix associated with x1:m, then the variance matrix associated
with the features a is given by

VA = GA|XVXG>A|X .

If VX is the diagonal matrix σ2
R I, then

VA = σ2
R(J> J)−1 = σ2

R(R>1 R1)
−1, (10)

using the fact that N>N = I.

Weighted Least-Squares Orthogonal Distance Regression

It is sometimes useful to incorporate weights wi ≥ 0 into the orthogonal distance
regression scheme so that the counterpart of (7) is

m

∑
i=1

w2
i d2(xi, a), d(xi, a) = (xi − s(u∗i , a))>ni. (11)
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Let W be the diagonal matrix with w2
i in the ith diagonal element. Then the counterpart

of (8) is
GA|X,W = GA|D,W N>, GA|D,W = −(J>W J)−1 J>W. (12)

The least-squares estimates derived from solving the weighted LSODR problem corre-
spond to maximum likelihood estimates [32] of the parameters for the statistical model

xi ∈ N (si, σ2
i I), wi = 1/σi,

in which the measured coordinates xi are perturbed from the true point si on the surface
by independent random effects drawn from a multivariate Gaussian (normal) distribution
with variance matrix σ2

i I where, here, I the 3× 3 identity matrix. From a statistical point of
view, the weights wi should be assigned to be 1/σi if σi is known or estimated. If σi = σ is
the same for all points, then the weights wi can be set to 1. In practice, the weights can be
used to reflect knowledge about the uncertainties associated with the measurement system.
For example, measurements with a longer probe offset can be assigned a smaller weight
than those with a shorter probe offset. Another practical use of the weights is to de-weight
or effectively remove points (setting wi = 0) from the analysis that are suspected of being
outliers. Setting wi = 0 can also be used to assess the contribution of the ith measurement
point to the estimate of the fitted parameters.

4. Sensitivity Matrix Associated with a Least-Squares Circle Fit to Data in a Plane

If a circle is parametrized by a = (x0, y0, r0)
> specifying its center coordinates

x0 = (x0, y0)
> and radius r0, the signed distance d(xi, a) from a data point xi to the

circle specified by a is
d(xi, a) = ri − r0,

where r2
i = (xi − x0)

2 + (yi − y0)
2. The ith row Jacobian matrix J of partial derivatives of

d(xi, a) with respect to a> is given by

J(i, :) = − 1
ri
[xi − x0, yi − y0, ri] = −[n>i , 1], ni = (xi − x0)/ri

The 3× 3 matrix H = J> J is given by

H =

[
∑i nin>i ∑i ni
∑i n>i m

]
.

The sensitivity matrix GA|X = H−1 J>N> where

J>N> = −
[

n1n>1 n2n>2 · · · nmn>m
n>1 n>2 · · · n>m

]
. (13)

Thus, perturbing xi by ∆xi causes x0 and r0 to be perturbed by an amount that depends
on extend to which ∆xi is aligned with the normal ni.

For points xi approximately uniformly distributed around the circle, H is approxi-
mately diagonal with

H ≈ m

 1/2 0 0
0 1/2 0
0 0 1

, H−1 ≈ 1
m

 2 0 0
0 2 0
0 0 1

. (14)

Thus, if VX = σ2
R I then, from (10), VA = σ2

RH−1, showing that the variances associated
with a vary with 1/m and that the variance associated with x0 is twice that associated with
r0, for a uniform distribution of points.
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Analytical Approximations for (An Arc Of) a Circle

The calculation of H in (14) is for the case of points uniformly distributed around a com-
plete circle. Similar but more complicated calculations can be made for points on a partial circle,
including the often-problematic case of a small arc of a circle. For these calculations, it is often
convenient to work in polar coordinates. For points (xi, yi)

> = r0(cos θi, sin θi)
> on a circle,

the corresponding contribution to the Jacobian matrix is the row (− cos θi,− sin θi,−1) and
the matrix H = J> J is given by

H =

 ∑i cos2 θi ∑i cos θi sin θi ∑i cos θi
∑i cos θi sin θi ∑i sin2 θi ∑i sin θi

∑i cos θi ∑i sin θi m

.

The principle of Monte Carlo integration [22] Section 7.7 states that for a function f (θ)
defined over a region A the integral of the function over the region can be approximated
according to

1
|A|

∫
A

f (θ)dθ ≈ 1
m

m

∑
i=1

f (θi), (15)

where θ1:m is a sample of points uniformly distributed over the region A and |A| is the
area/volume of the region. We can use this approximation in the other direction to ap-
proximate H derived from a discrete set of points from analytically derived integrals. For
example, suppose points x1:m are approximately uniformly distributed of the arc of the
circle defined by −α ≤ θi ≤ α. Then

m

∑
i=1

cos2 θi ≈
m
2α

∫ α

−α
cos2 θdθ = m

(
1
2
+

sin 2α

4α

)
;

see Appendix A. Continuing in this way, let

Hα =

 1/2 + (sin 2α)/4α 0 (sin α)/α
0 1/2− (sin 2α)/4α 0

(sin α)/α 0 1

, (16)

so that Vα = H−1
α is given by

Vα =
1

D13

 1 0 −(sin α)/α
0 D13/(1/2− (sin 2α)/4α) 0

−(sin α)/α 0 (1/2 + (sin 2α)/4α)

,

where
D13 = 1/2 + (sin 2α)/4α− ((sin α)/α)2,

is the determinant of the 2× 2 submatrix of Hα constructed from its first and third rows
and columns. Then

(J> J)−1 ≈ 1
m

Vα.

If the variance matrix associated x1m can be approximated by σ2
R I, then the variance

matrix VA associated with the fitted circle parameters is approximated by

VA ≈
σ2

R
m

Vα,

and the standard uncertainties associated with a are given by σR

√
vjj/m, where vjj is

the jth diagonal element of Vα. The quantities s(aj) =
√vjj for selected values of α

are given in Table 1. For α less than 10π/180, i.e., less than 10 degrees, then D13 is
approximated by α4/45 and the diagonal elements of Vα are approximated by 45/α4, 3/α2
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and 45(1− α2/3)/α4; see also Table 1. The uncertainty associated with the y-coordinate of
the circle center scales with 1/α while the uncertainties associated with the x-coordinate
and radius scale with 1/α2, for small α. The estimate of the x-coordinate of circle center is
almost perfectly negatively correlated with the estimate of the radius.

Table 1. Arc of a circle. Square roots s(a) of the diagonal elements of Vα. For points x1:m approxi-
mately uniformly distributed on the arc of the circle defined by −α ≤ θi ≤ α and for point-cloud
variance matrix σ2

R I, the uncertainties u(a) = σRs(a)/
√

m.

2α/deg s(x0) s(y0) s(r0)

360 1.41 1.41 1.00

270 1.81 1.28 1.14

180 3.25 1.41 2.30

160 3.96 1.51 2.97

140 5.00 1.65 3.98

120 6.62 1.85 5.56

100 9.30 2.14 8.23

80 14.25 2.61 13.16

60 24.95 3.40 23.85

40 55.54 5.02 54.42

20 220.70 9.95 219.58

α ≤ 5 deg

α/rad ≈
√

45/α2 ≈
√

3/α ≈
√

45/α2

5. Sensitivity Matrix Associated with a Least-Squares Sphere Fit to Data

If a sphere is parametrized by a = (x0, y0, z0, r0)
> specifying its center coordinates

x0 = (x0, y0, z0)
> and radius r0, the signed distance d(xi, a) from a data point xi to the

sphere given by a is d(xi, a) = ri − r0, where r2
i = (xi − x0)

2 + (yi − y0)
2 + (zi − z0)

2.
The ith row Jacobian matrix J of partial derivatives of d(xi, a) with respect to a> is

given by

J(i, :) = − 1
ri
[xi − x0, yi − y0, zi − z0, ri] = −[n>i , 1], ni = (xi − x0)/ri

The 4× 4 matrix H = J> J is given by

H =

[
∑i nin>i ∑i ni
∑i n>i m

]
.

For points xi approximately uniformly distributed around the sphere, H is approxi-
mately diagonal with

H ≈ m


1/3 0 0 0

0 1/3 0 0
0 0 1/3 0
0 0 0 1

, H−1 ≈ 1
m


3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 1

.

Thus, if VX = σ2
R I then, from (10), VA = σ2

RH−1, showing that the variances associated
with a vary with 1/m and that the variances associated with x0 are three times that
associated with r0, for a uniform distribution of points around the complete sphere.
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The sensitivity matrix of a with respect to x1:m is given by GA|X = H−1 J>N> where

J>N> = −
[

n1n>1 n2n>2 · · · nmn>m
n>1 n>2 · · · n>m

]
. (17)

Perturbing xi by ∆xi causes x0 and r0 to be perturbed by an amount that depends on
extend to which ∆xi is aligned with the normal ni.

5.1. Analytical Approximations for a Patch of a Sphere

We can use the principle of Monte Carlo integration (15) to determine analytical
approximations for matrices used to construct the sensitivity matrices. It is convenient
to work in spherical coordinates (x, y, z) = (cos θ cos φ, sin θ cos φ, sin φ), where θ is the
azimuth angle about the z-axis and φ is the angle of elevation above the xy-plane. For
points approximately uniformly distributed on the sphere on the patch determined by
−π ≤ α1 ≤ θ ≤ α2 ≤ π and −π/2 ≤ β1 ≤ φ ≤ β2 ≤ π/2 we have

1
m

J> J ≈ 1
A

HA,

where HA is the symmetric matrix with

HA(1, 1) =
∫ α2

α1

cos2 θdθ
∫ β2

β1

cos3 φdφ,

HA(1, 2) =
∫ α2

α1

sin θ cos θdθ
∫ β2

β1

cos3 φdφ

HA(1, 3) =
∫ α2

α1

cos θdθ
∫ β2

β1

sin φ cos2 φdφ,

HA(1, 4) =
∫ α2

α1

cos θdθ
∫ β2

β1

cos2 φdφ,

HA(2, 2) =
∫ α2

α1

sin2 θdθ
∫ β2

β1

cos3 φdφ,

HA(2, 3) =
∫ α2

α1

sin θdθ
∫ β2

β1

sin φ cos2 φdφ,

HA(2, 4) =
∫ α2

α1

sin θdθ
∫ β2

β1

cos2 φdφ,

HA(3, 3) = (α2 − α1)
∫ β2

β1

sin2 φ cos φdφ,

HA(3, 4) = (α2 − α1)
∫ β2

β1

sin φ cos φdφ,

HA(4, 4) = (α2 − α1)
∫ β2

β1

cos φdφ.

These integrals can be evaluated according to the formulæ in Appendix A. The ele-
ments of HA take into account the change of variables from Cartesian to spherical coordi-
nates and involve an additional cos φ term.



Appl. Sci. 2022, 12, 2808 9 of 19

5.2. Cap of a Sphere

We consider here the case −π ≤ θ ≤ π and −π/2 ≤ β1 ≤ φ ≤ π/2. For this case, the
nonzero elements of Hγ = 1

|A|HA are determined by

Hγ(1, 1) =
1

2(1− cos γ)
(2/3− cos γ− cos3 γ/3),

Hγ(2, 2) =
1

2(1− cos γ)
(2/3− cos γ− cos3 γ/3),

Hγ(3, 3) =
1

1− cos γ
(1− cos3 γ)/3,

Hγ(3, 4) =
1

1− cos γ
(1− cos 2γ)/4,

Hγ(4, 4) = 1,

where γ = π/2− β1. Thus, γ is the angle between the lower edge of the spherical cap and
the North pole. The nonzero elements of Vγ = H−1

γ are determined by

Vγ(1, 1) = 1/Hγ(1, 1),

Vγ(2, 2) = 1/Hγ(2, 2),

Vγ(3, 3) =
1

D34

Vγ(3, 4) = − 1
D34

Hγ(3, 4),

Vγ(4, 4) =
1

D34
Hγ(3, 3),

where
D34 = Hγ(3, 3)− H2

γ(3, 4),

the determinant of the bottom right 2× 2 submatrix of Hγ. If the point-cloud data are
associated with variance matrix σ2

R I, then the variance matrix VA associated with the fitted
sphere parameters a is approximated by

VA ≈
σ2

R
m

Vγ.

For γ approaching zero, corresponding to measurements on a cap of a sphere,
D34 ≈ γ4/48, and

Vγ ≈


4/γ2 0 0 0

0 4/γ2 0 0
0 0 48/γ4 −48(1− γ2/4)/γ4

0 0 −48(1− γ2/4)/γ4 48(1− γ2/2)/γ4

. (18)

The quantities s(aj) =
√

Vγ(j, j) for selected values of γ are given in Table 2. The
uncertainty associated with the x and y-coordinates of the sphere center scale with 1/γ
while the uncertainties associated with the z-coordinate and radius scale with 1/γ2, for
small γ. The estimate of the z-coordinate of sphere center is almost perfectly negatively
correlated with the estimate of the radius. These results are in line with results associated
with an arc of a circle discussed in Section 4. These calculations are also relevant to
determining the radius of curvature for other surfaces such as paraboloids and aspherics
that have low curvature.
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Table 2. Cap of a sphere. Square roots s(a) of the diagonal elements of Vγ in (18). For points x1:m

approximately uniformly distributed on the sphere with elevation angle satisfying π/2− γ ≤ φi ≤ π/2
and for point-cloud variance matrix σ2

R I, the uncertainties u(a) = σRs(a)/
√

m.

γ/deg s(x0) s(y0) s(z0) s(r0)

180 1.73 1.73 1.73 1.00

135 1.65 1.65 2.03 1.04

90 1.73 1.73 3.46 2.00

80 1.83 1.83 4.19 2.66

70 1.97 1.97 5.26 3.67

60 2.19 2.19 6.93 5.29

50 2.52 2.52 9.70 8.03

40 3.04 3.04 14.81 13.11

30 3.95 3.95 25.86 24.15

20 5.82 5.82 57.44 55.72

10 11.50 11.50 228.02 226.29

γ ≤ 5 deg

γ/rad ≈2/γ ≈2/γ ≈
√

48/γ2 ≈
√

48/γ2

5.3. Equatorial Band of a Sphere

The calculations in Section 5.1 can be used to estimate sensitivities associated with
measurements distributed along an equatorial band of a sphere defined by −π ≤ θ ≤ π
and −β ≤ φ ≤ β ≤ π/2. Here β is the angle between top and bottom of the band and the
equatorial plane. These calculations are also relevant to measurements using ball bar or
machine checking gauge that rotates about a fixed point and defines points on a virtual
sphere. The area over which the integration is performed is |A| = 4π sin β. For points
approximately uniformly distributed in an equatorial band, if the point-cloud data are
associated with variance matrix σ2

R I, then the variance matrix VA associated with the fitted
sphere parameters a is approximated by

VA ≈
σ2

R
m

Vβ

where

Vβ =


2/(1− sin2 β/3) 0 0 0

0 2/(1− sin2 β/3) 0 0
0 0 3/ sin2 β 0
0 0 0 1

. (19)

Table 3 gives the square roots s(a) of the diagonal elements of Vβ in (19) for selected values
of the parameter β. For points x1:m approximately uniformly distributed on an equatorial
band of the sphere with elevation angle satisfying −β ≤ φi ≤ β ≤ π/2 and for point-cloud
variance matrix σ2

R I, the uncertainties u(a) = σRs(a)/
√

m. The parameters x0, y0 and r0
remain well-defined as β approaches zero while the uncertainty associated with z0 scales
with 1/β.
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Table 3. Equatorial band of a sphere. Square roots s(a) of the diagonal elements of Vβ in (19). For
points x1:m approximately uniformly distributed on an equatorial band of the sphere with elevation
angle satisfying −β ≤ φi ≤ β ≤ π/2 and for point-cloud variance matrix σ2

R I, the uncertainties
u(a) = σRs(a)/

√
m.

β/deg s(x0) s(y0) s(z0) s(r0)

90 1.73 1.73 1.73 1.00

80 1.72 1.72 1.76 1.00

70 1.68 1.68 1.84 1.00

60 1.63 1.63 2.00 1.00

50 1.58 1.58 2.26 1.00

40 1.52 1.52 2.69 1.00

30 1.48 1.48 3.46 1.00

20 1.44 1.44 5.06 1.00

10 1.42 1.42 9.97 1.00

β ≤ 5 deg

β/rad ≈
√

2 ≈
√

2 ≈
√

3/β 1

5.4. Points on a Longitudinal Segment of a Sphere

The calculations in Section 5.1 can also be used to estimate sensitivities associated with
measurements distributed in a longitudinal segment of a sphere defined by
−π ≤ −α ≤ θ ≤ α ≤ π and −π/2 ≤ φ ≤ π/2 ( the curved surface of a segment of
an orange). The area over which the integration is performed is |A| = 4α. For points ap-
proximately uniformly distributed over the segment, if the point-cloud data are associated
with variance matrix σ2

R I, then the variance matrix VA associated with the fitted sphere
parameters a is approximated by

VA ≈
σ2

R
m

Vα (20)

where the nonzero elements of Vα are specified by

Vα(1, 1) = 1/D14,

Vα(1, 4) = −π sin α/(4αD14),

Vα(2, 2) = 3α/(α− (sin 2α)/2),

Vα(3, 3) = 3,

Vα(4, 4) = 3α/(D14(α + (sin 2α)/2)),

with

D14 =
α + (sin 2α)/2

3α
−
(

π sin α

4α

)2
.

the determinant of the 2× 2 submatrix of Hα = V−1
α comprising of rows and columns 1

and 4. For α near zero, D14 ≈ 2/3− (π/4)2 ≈ 0.05,

Vα ≈


20 0 0 −5π
0 9/(2α2) 0 0
0 0 3 0
−5π 0 0 40/3

. (21)

The quantities s(aj) =
√

Vα(j, j) for selected values of α are given in Table 4. The
uncertainty associated with the y-coordinate of the sphere center scales with 1/α, while all
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other parameters remain well defined. These calculations depend on measuring over the
complete segment, including the two poles. Corresponding calculations for measurements
reduced to an equatorial band of the segment can be made using the results in Section 5.1.

Table 4. Longitudinal segment of a sphere. Square roots s(a) of the diagonal elements of Vα

in (20). For points x1:m approximately uniformly distributed on a segment of the sphere with
−α ≤ θi ≤ α ≤ π and for point-cloud variance matrix σ2

R I, the uncertainties u(a) = σRs(a)/
√

m.

2α/deg s(x0) s(y0) s(z0) s(r0)

360 1.73 1.73 1.73 1.00

270 2.20 1.57 1.73 1.13

180 3.46 1.73 1.73 2.00

160 3.85 1.85 1.73 2.36

140 4.22 2.02 1.73 2.74

120 4.50 2.26 1.73 3.09

100 4.66 2.62 1.73 3.36

80 4.69 3.19 1.73 3.53

60 4.64 4.16 1.73 3.62

40 4.56 6.15 1.73 3.65

20 4.50 12.19 1.73 3.66

α ≤ 5 deg

α/rad ≈
√

20 ≈
√

4.5/α ≈
√

3 ≈
√

40/3

6. Sensitivity Matrix Associated with a Least-Squares Plane Fit to Data

The calculations associated with an axis given above in Section 2 allow us to evaluate
the sensitivity matrix associated with a least-squares plane fit to data. Given a location
point xA and unit direction vector vA, the equation of the associated plane can be written as

(x− xA)
>vA = 0.

The calculations involve a parametrization of the plane in terms of three parameters a
in which the kth coordinate of vA is held fixed and only the kth coordinate of xA is free.

Analytical Approximation for Measuring a Rectangular Area

Suppose data points x1:m are distributed approximately uniformly on the plane z = 0
with −a ≤ xi ≤ a and −b ≤ yi ≤ b and J is the m× 3 Jacobian matrix associated with
fitting a plane to the data with J(i, 1 : 3) = (−1, xi, yi). This Jacobian matrix corresponds
to parametrization in terms of the z-coordinate of xA and the x- and y-coordinates of vA,
a = (zA, uA, vA)

>, holding xA, yA and wA constant. Then, using the principle of Monte
Carlo integration (15),

1
m

J> J ≈ Hab,

where

Hab =

 1 0 0
0 a2/3 0
0 0 b2/3

. (22)

Set

Vab = H−1
ab =

 1 0 0
0 3/a2 0
0 0 3/b2

. (23)



Appl. Sci. 2022, 12, 2808 13 of 19

If the variance matrix associated with x1:m is approximated by σ2
R I, then the standard

uncertainties u(a) associated with the parameters is given by

u(a) =
σR√

m
(1,
√

3/a,
√

3/b)>. (24)

Thus, the uncertainty in the angle of rotation about the x-axis scales with 1/b and that
associated with rotation about the y-axis scales with 1/a.

7. Sensitivity Matrix Associated with a Least-Squares Cylinder Fit to Data

The calculations associated with an axis given above in Section 2 allow us to evaluate
the sensitivity matrix associated with a least-squares cylinder fit to data.

Analytical Approximation for Measuring a Cylindrical Patch

For this section, it is convenient to work in cylindrical coordinates. Suppose data
points xi = (r0 cos θi, r0 sin θi, zi)

> are distributed approximately uniformly on a cylinder
x2 + y2 = r2

0 with −π ≤ −α ≤ θi ≤ α ≤ π and −a ≤ zi ≤ a. In words, the points on the
cylindrical patch are limited to a circumferential arc of length 2α. Let xA = (xA, yA, zA)

>

and vA = (uA, vA, wA)
> specify the locating point and direction vector of the cylinder axis.

Parametrizing the cylinder in terms of a = (xA, yA, uA, vA, r0)
> (holding zA and wA fixed),

the associated m× 5 Jacobian matrix has ith row given by

J(i, 1 : 5) = −[cos θi sin θi − zi sin θi zi cos θi 1].

Then, using the principle of Monte Carlo integration (15),

1
m

J> J ≈ Haα,

where the nonzero elements of Haα are specified by

Haα(1, 1) =
1

2α
(α + (sin 2α)/2),

Haα(1, 5) = (sin α)/α

Haα(2, 2) =
1

2α
(α− (sin 2α)/2),

Haα(3, 3) =
a2

6α
(α− (sin 2α)/2),

Haα(4, 4) =
a2

6α
(α + (sin 2α)/2),

Haα(5, 5) = 1.

For α = π, corresponding to data approximately uniformly distributed on the cylin-
drical surface, we have

Vaπ = H−1
aπ =


2 0 0 0 0
0 2 0 0 0
0 0 6/a2 0 0
0 0 0 6/a2 0
0 0 0 0 1

,

showing that the uncertainties associated with the direction vector vA scale with 1/a (but
are independent of the radius r0). For general α, the elements in the first, second and
fifth rows and columns of Haα above are exactly the same as the elements of Hα in (16)
associated with the analysis of measurements of an arc of a circle. In particular, the behavior
for measurements of a section of a cylinder subtending a small angle can be derived from
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the analysis on an arc of a circle. Let Vaα = H−1
aα . The matrix Vα given by (20) is a submatrix

of Vaα. For points approximately uniformly distributed in −π ≤ −α ≤ θi ≤ α ≤ π,
−a ≤ zi ≤ a and if the point-cloud data are associated with variance matrix VX = σ2

R I, then
the variance matrix VA associated with the fitted cylinder parameters a is approximated by

VA ≈
σ2

R
m

Vaα. (25)

Table 5 shows the square roots s(a) of the diagonal elements of Vaα as a function of a
(the height of the cylinder is 2a) and α. For VX = σ2

R, u(a) = σRs(a)/
√

m. For a small arc
of a cylinder, α near zero, the uncertainties in the x-coordinate of the axis locating point
and the radius scale with 1/α2, the y-coordinate of the axis locating point and the angle of
rotation about the x-axis scale with 1/α while the angle of rotation of about the y-axis is
well defined. The uncertainties associated with the angles of rotation scale with 1/a.

Table 5. Cylindrical patch. Square roots s(a) of the diagonal elements of Vaα in (25). For points
x1:m approximately uniformly distributed over a segment of a cylinder with −α ≤ θi ≤ α ≤ π and
−a ≤ zi ≤ a, and point-cloud variance matrix VX = σ2

R I, the uncertainties u(a) = σRs(a)/
√

m.

2α/deg s(xA) s(yA) as(uA) as(vA) s(r0)

360 1.41 1.41 2.45 2.45 1.00

270 1.81 1.28 2.22 2.76 1.14

180 3.25 1.41 2.45 2.45 2.30

160 3.96 1.51 2.61 2.31 2.97

140 5.00 1.65 2.85 2.18 3.98

120 6.62 1.85 3.20 2.06 5.56

100 9.30 2.14 3.71 1.96 8.23

80 14.25 2.61 4.51 1.88 13.16

60 24.95 3.40 5.89 1.81 23.85

40 55.54 5.02 8.70 1.77 54.42

20 220.70 9.95 17.24 1.74 219.58

α ≤ 5 deg

α/rad ≈
√

45/α2 ≈
√

3/α ≈3/α ≈
√

3 ≈
√

45/α2

8. Sensitivity Matrix Associated with a Least-Squares Cone Fit to Data

The calculations associated with an axis given above in Section 2 and a cylinder fit can
be extended to evaluate the sensitivity matrix associated with a least-squares cone fit to
data. The calculations below are based on specifying the cone in terms of an axis locating
point xA, an axis unit direction vector vA, cone radius r0, and cone angle φ. The radius
parameter is the radius of the circle defined by the intersection of the cone with the plane
passing through xA and orthogonal to vA, i.e., the set of points x on the cone satisfying
(x− xA)

>vA = 0. The cone angle is the angle the cone generator makes with cone axis, i.e.,
half the vertex angle, with the convention that if φ > 0, then the vertex of the cone lies at
xA + tvA with t > 0. Although it may be natural to use the cone vertex as the axis locating
point, the parametrization in terms of a radius remains stable for cone angles near zero.

The distance d from a point x to a cone specified by b> = (x>A , v>A , r0, φ)> is given by

d = d(x, b) = (cos φ)dC(x, b) + (sin φ)dP(x, a), (26)

where dC(x, b) is the distance of x to the cylinder specified by xA, vA and r0 and dP(x, b) is
the distance of x to the plane specified by xA and vA.
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Analytical Approximation for Measuring a Patch of a Cone

Suppose data points xi = (ri cos θi, ri sin θi, zi)
>, ri = r0 − tan φzi, are distributed

approximately uniformly on a cone with xA = 0, vA = (0, 0, 1)>, with −α ≤ θi ≤ α ≤ π
and −a ≤ zi ≤ a. Parametrizing the cone in terms of a = (xA, yA, uA, vA, r0, φ)> (holding
zA and wA constant), the associated m× 6 Jacobian matrix has ith row given by

J(i, 1 : 6) =



− cos φ cos θi
− cos φ sin θi

wi sin θi
−wi cos θi
− cos φ

zi/ cos φ

, wi = zi/ cos φ− r0 sin φ.

Then, using the principle of Monte Carlo integration (15),

1
m

J> J ≈ Haαφ,

where the nonzero elements of Haαφ are given by the integrals of functions of θ, z and
φ determined from the form of the Jacobian matrix above. The integrals are somewhat
more complicated than the other cases already considered but can be easily evaluated
using one-dimensional quadrature routines [22]. Here we give some example calculations.
Table 6 shows the square roots s(a) of the diagonal elements of Vaαφ = H1

aαφ as a function
of φ for the case α = π, r0 = 50 and a = 100. For VX = σ2

R, u(a) = σRs(a)/
√

m. As φ
approaches 90 degrees, the uncertainties associated with xA, yA and r0 increase markedly.

Table 7 shows the square roots s(a) of the diagonal elements of Vaαφ as a function of α.
For VX = σ2

R, u(a) = σRs(a)/
√

m. For a small arc of a cone, α near zero, the uncertainties
associated with xA, uA, vA, r0 and φ scale with 1/α2 while those associated with the yA
and uA scale with 1/α. No parameter is well defined.

Table 6. Cone frustum of varying cone angle. Square roots s(a) of the diagonal elements of Vaαφ as
a function of φ. For points x1:m approximately uniformly distributed over cone with cone angle φ,
−π ≤ θi ≤ π and −a ≤ zi ≤ a, a = 100 and point-cloud variance matrix VX = σ2

R I, the uncertainties
u(a) = σRs(a)/

√
m.

φ/deg s(xA) s(yA) s(uA) s(vA) s(r0) s(φ)

0 1.41 1.41 0.05 0.05 1.00 0.03

10 1.71 1.71 0.05 0.05 1.02 0.03

20 2.38 2.38 0.05 0.05 1.07 0.03

30 3.21 3.21 0.04 0.04 1.17 0.03

40 4.14 4.14 0.04 0.04 1.35 0.03

50 5.28 5.28 0.03 0.03 1.66 0.02

60 7.12 7.12 0.03 0.03 2.31 0.02

70 13.59 13.59 0.03 0.03 4.80 0.02
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Table 7. Arc segment of a cone. Square roots s(a) of the diagonal elements of Vaαφ as a function of
α. For points x1:m approximately uniformly distributed over a segment of a cone with cone angle
φ = 45 degrees, −α ≤ θi ≤ α ≤ π and −a ≤ zi ≤ a, and point-cloud variance matrix VX = σ2

R I, the
uncertainties u(a) = σRs(a)/

√
m.

2α/deg s(xA) s(yA) as(uA) as(vA) s(r0) s(φ)

360 4.06 4.06 0.04 0.04 1.73 0.03

270 5.21 3.69 0.04 0.05 1.97 0.03

180 9.33 4.06 0.04 0.10 3.98 0.07

160 11.37 4.34 0.05 0.12 5.14 0.09

140 14.37 4.73 0.05 0.15 6.89 0.12

120 19.01 5.30 0.06 0.20 9.64 0.17

100 26.72 6.15 0.06 0.28 14.25 0.25

80 40.94 7.48 0.08 0.43 22.79 0.39

60 71.67 9.77 0.10 0.75 41.31 0.72

40 159.51 14.43 0.15 1.67 94.27 1.63

20 633.90 28.59 0.30 6.62 380.32 6.59

9. Numerical Example: Measuring a Sphere to Determine Datum Location

In several applications a high-quality sphere or tooling ball is used to determine
a location in specifying a frame of reference. Here we give example calculations for
measurement strategies involving:

• Six points:four equally spaced around the equator, and one at each pole.
• Five points: as for six points but missing the point at the South pole
• Nine points: four equally spaced around the equator and another four equally spaced

at elevation angle φ > 0 and additional point at the North pole.

We assume that the associated point-cloud variance matrix is given by VX = σ2
R I.

We are interested in strategies such that all coordinates of the sphere center have
approximately the same uncertainty. This is achieved by the six-point strategy which is
symmetrical in each axis. However, due constraints associated mounting the reference
sphere, it is quite unlikely that such a six-point strategy is feasible. The other point
distributions all involve points on a hemisphere and are usually possible to implement.

For the nine-point strategy, the measurement strategy depends on the elevation angle
φ. If Jφ is the Jacobian matrix associated with the nine points, and Hφ = J>φ Jφ, then

Hφ =


4− 2 sin2 φ 0 0 0

0 4− 2 sin2 φ 0 0
0 0 1 + 4 sin2 φ 1 + 4 sin φ
0 0 1 + 4 sin φ 9

.

The variance matrix associated with a depends on matrix Vφ = H−1
φ and the require-

ment that the uncertainties in the sphere center coordinates are equal leads to the equation

38 sin2 φ− 8 sin φ− 28 = 0,

a quadratic equation in sin φ, from which we deduce

sin φ = (8 +
√

4320)/76,
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i.e., φ = 75.95◦. For this value of φ, the four points on the upper circle are at height 0.97r0
and radius approximately r0/4, so quite near the North pole.

Table 8 gives estimates s(a) = σRu(a) for the three measurement strategies discussed
above. The first column in the pairs of columns gives the uncertainties calculated using an
analytic approximation based on assuming a uniform distribution of points on the sphere or
hemisphere while the second column gives the uncertainties based on the actual distribution
of points. For the six-point strategy, the uncertainties in the sphere center coordinates are
seen to be the same and that the analytical approximation to the uncertainties is exact. For
the five-point strategy, the uncertainty associated with z0 is larger than those associated
with x0 and y0 by a factor of two. For the nine-point strategy, φ is set to value that delivers
equal uncertainties associated with the sphere center coordinates. We note the analytical
approximations given in columns labelled s|5 and s|9 in Table 8 are related to the elements
of the row of Table 2 corresponding to γ = 90◦ (hemisphere) by dividing through by

√
5

and 3 =
√

9, respectively.

Table 8. Sphere datum location. Estimates of s(a) = σRu(a) associated with sphere parameters
for three measurement strategies. The first column of two gives the uncertainties calculated using
an analytic approximation based on assuming a uniform distribution of points on the sphere or
hemisphere while the second column gives the uncertainties based on the actual distribution of points.

s|6 s|X6 s|5 s|X5 s|9 s|X9

x0 0.71 0.71 0.77 0.71 0.58 0.69
y0 0.71 0.71 0.77 0.71 0.58 0.69
z0 0.71 0.71 1.55 1.12 1.15 0.69
r0 0.41 0.41 0.89 0.50 0.67 0.50

10. Concluding Remarks

This paper has been concerned with the evaluation of the uncertainties associated
with Gaussian-associated features following the GUM methodology. We have shown how
sensitivity matrices necessary for a GUM uncertainty evaluation can be calculated and
how the variance matrices associated with the feature parameters can be estimated for
a range of complete and partial features common in engineering. Example results are
given in tables that allow practitioners to estimate, a priori, the uncertainties associated
with fitted parameters, given a proposed measurement strategy for the case in which the
point-cloud variance matrix is a multiple of the identity matrix. The sensitivity matrices can
be used to evaluate the uncertainties for associated features for more general point-cloud
variance matrices. All the calculations are straightforward and have been implemented in
a spreadsheet supporting basic matrix algebra, for example.
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Appendix A. Indefinite Integrals Used for Sensitivity Calculations

The following integrals are relevant to estimating sensitivity matrices associated with
fitting circles, spheres, cylinders and cones to data according to the least-squares criterion,
Section 3: ∫

sin θdθ = − cos θ + C,∫
cos θdθ = sin θ + C,∫

sin2 θdθ =
1
2

θ − 1
4

sin 2θ + C,∫
cos2 θdθ =

1
2

θ +
1
4

sin 2θ + C,∫
sin θ cos θdθ = −1

4
cos 2θ + C,∫

cos3 θdθ = sin θ − 1
3

sin3 θ + C,∫
sin3 θdθ =

1
3

cos3 θ − cos θ + C,∫
sin2 θ cos θ =

1
3

sin3 θ + C,∫
sin θ cos2 θ = −1

3
cos3 θ + C.
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