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1. Abstract 
This report is concerned with an a posteriori (type A) uncertainty evaluation method developed 
in the work package 1 (WP1) of the EUCoM project. The WP1 resulted in a procedure based 
on multiple measurements taken by coordinate measuring machines (CMM) for evaluating the 
task-specific measurement uncertainty a posteriori. Through it, the measured values and the 
measurement uncertainties of products’ geometrical features are calculated by a simple 
spreadsheet application based on the analysis of variance (ANOVA). This spreadsheet can 
easily run on the computers that are ordinarily available at the CMM and at the manufacturing 
floor. 
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2. Introduction 
This document describes a method and related procedures for the evaluation of task-specific 
measurement uncertainty using coordinate measuring systems (CMSs [1]). The method 
applies to Cartesian coordinate measuring machines (CMMs) equipped with tactile probing 
systems. Nonetheless, its overall approach may be applicable to other types of CMSs as well 
(for instance, see [2] for an application to X-ray computer tomography). 
A possible application of the method is for calibration of workpieces then used as calibrated 
workpieces in ISO 15530-3 [3]. Another possible application is the conformity verification of 
workpieces against their geometrical specifications in accordance with ISO 14253-1 [4].  
The overall procedure consists of three steps:  

1. multiple measurements of the workpiece;  
2. measurements of length standards, and 
3. measurements of a test sphere. 

All measurements are carried out in the same portion of the CMM measuring volume. 
The multiple measurements are performed by repetition with several workpiece orientations 
with identical distribution of probing points. The measurements of length standards–such as a 
gauge block–are executed with the standard in three directions perpendicular to one another, 
typically along the X, Y and Z axes of the CMM; this is intended to capture the CMM scale 
errors, including thermal effects. The measurements of a test sphere with all probe styli used 
for the previous steps is intended to investigate the probe errors. 
In principle, the feature of the workpiece shall be evaluated for its integral real surface. 
Practically, a finite number of points are sampled and an ideal surface is associated (integral 
feature associated to the extracted measured points sampled on the real surface). A common 
problem in the ISO GPS (Geometrical Product Specifications) is how to validate a real surface 
based on a limited number of sampled points. 
In the case of a tactile CMMs, the number of the measured points is usually not very large. 
This implies that high-frequency components of the surface are not captured. 
Figure 1 illustrates the form measurement with the extracted measured points, based on the 
concept in ISO 4287 [5]. In the case of surface texture parameter verification, the scope of the 
measurement is focused on the high-frequency components of the primary profile obtained on 
the physical surface. To put it the other way around, relatively low-frequency components of 
the primary profile are of interest in the case of form feature verification. 
 

 
Figure 1 concept of form measurement with the extracted measured points 
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With the method reported in this document, a limited number of measured points is used to 
verify conformity of features. BS 7172 [6] gives guidance and recommendations on the 
minimum number of measured points for the assessment of geometrical features: position, 
size and form errors. However, the recommended number of points is small: at most 15. In 
contrast, ISO 12181-2 [7] provides a larger, but still manageable number of measurement 
points to evaluate relatively low-frequency components of feature, e.g., 105 points for 1st to 
15th components of roundness. In this document, it is assumed that the features under 
verification are associated with at most a few hundred measured points. 
The concept of the method in this document is similar to that in the ISO/DTS 15530-2 (2007) 
[8] by Dr. Eugen Trapet, which is listed as ISO/TC 213 N 940 in the ISO/TC 213 internal 
document server. This was the outcome of an ISO/TC 213/WG 10 project, which was brought 
to the stage of DTS (Draft Technical Specification) and then abandoned for lack of resources. 
In turn, that project had its roots in an earlier European project [9]. The underlying principle of 
the procedure in this document is found in Clause 6 of the DTS [8]. 
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3. Procedure 
3.1 Measurements 
3.1.1 Multiple measurements on the workpiece 
The workpiece is measured in four orientations as a default [10] [11]. Measurements in more 
orientations may be performed to better randomize systematic effect. Figure 2 shows an 
example of the measurement setup of a workpiece on the CMM. An orientation is referred to 
as "home position". The others are example orientations to randomize the systematic effects 
of the CMM. Four orientations are recommended, obtained by rotating the artefact at home 
position 90° in turn about the first, the second and the third axis of the CMM.  
The measurements are carried out with an identical distribution of measured points1 (same 
sampling pattern), i.e., the number and nominal locations of the measured points for extraction 
(see, ISO 14406 [12]) is the same for all positions. In the case that the method applies for 
calibrating the workpiece, the actual distribution of the measured points shall be recorded. 
The number of repetitions for each orientation is three2 by default. When a CMM is known to 
have poor repeatability3, the number of repetitions may be increased, to the discretion of the 
CMM user.  
The results of all these measurements are the values ijy (see Table 1), where j = 1 ... n2 
indicates the orientation and i = 1 ... n1 the repeat in a same orientation. 
 

                                                 
1 The distributions of measurement points in the DTS [8] are randomized  for the different positions. 

This aims at eliminating the unknown CMM systematic errors by averaging. However, it is hard to 
provide randomly varied distributions of measurement points when CMMs are operated under 
numerical control. In this document, the sampling pattern is kept identical for all position for sake of 
practicality. 

2 In the DTS, the default number of repetitions for the artefact measurement is at least five. In contrast, 
this document proposes three. A reason is for consistency with the number of repetitions for length 
and diameter standards (3). Another reason is that the variations of the measurement results by 
identical distributions of measurement points using well-maintained CMMs are not so large. 

3 For example, if the CMM exhibited a large R0 value, or is specified with a large R0,MPE value (if no 
actual tests were performed), according to ISO 10360-2 [13]. 
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a) Orientation 1 
(home position) 

b) Orientation 2 
(Example: 90° rotated position about the 

first axis of the CMM) 

  
c) Orientation 3 

(Example: 90° rotated position about the 
second axis of the CMM) 

d) Orientation 4 
(Example: 90° rotated position about the 

third axis of the CMM) 
Figure 2 example of measurement setup of the workpiece in four orientations 

 

Table 1 Summary of measurement results of the workpiece 

 Orientation 1 
(home position) Orientation 2 Orientation 3 Orientation 4 

Repeat 1 11y 12y 13y 14y 

Repeat 2 21y 22y 23y 24y 

Repeat 3 31y 32y 33y 34y 

 
3.1.2 Measurements of standards of length 
Material standards of length are measured in the same portion of the CMM volume where the 
workpiece is measured. The measurements of these standards are performed in at least three 
orientations approximately orthogonal to each other, typically aligned to the CMM axes. 
Figure 3 shows an example setup. 
The results of the measurements of the length standards are used for two purposes: the 
compensation of the scale error of the CMM in the region of interest and the evaluation of the 
uncertainty derived from that scale error compensation. Ideally, the scale error values should 
be detected without the influence of probing errors. Therefore, it is recommended to carry out 
unidirectional measurements of the length standards (see Annex B of ISO 10360-2 [13] or EVol 
currently discussed in ISO/TC 213/WG 10 [14]). 
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In each orientation, the length standards are measured three times. When the CMM 
repeatability is known to be poor4, the number of repetitions shall be larger (e.g. 5).  
Results are the values ijLmeasstd (see Table 2), where j = 1 ... n4 indicates the orientation and 
i = 1 ... n3 the repeat in a same orientation. 

 

  
a) X axis direction b) Y axis direction 

 
c) Z axis direction  

Figure 3 measurement setup of the length standard in three mutually-orthogonal 
directions. 

 
Table 2 Summary of measurement results of the length standards 

 Orientation 1 
(X axis direction) 

Orientation 2 
(Y axis direction) 

Orientation 3 
(Z axis direction) 

Repeat 1 11Lmeasstd 12Lmeasstd 13Lmeasstd 

Repeat 2 21Lmeasstd 22Lmeasstd 23Lmeasstd 

Repeat 3 31Lmeasstd 32Lmeasstd 33Lmeasstd 
 

3.1.3 Measurements of a test sphere 
The material standards of form are measured in the same portion of the CMM volume where 
the workpiece is measured. The material standard of form shall be different from the reference 

                                                 
4 See previous footnote 3. 
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sphere used for the probe qualification [15]. It is recommended to use a test sphere as the 
material standard of form5. Figure 4 shows an example setup. 
The measurement results are used for two purposes: the compensation of the CMM probing 
size error the and the evaluation of the uncertainty incurred in probing6 .  
The test sphere is measured at least once with each probe stylus used for measuring the 
workpiece and the length standards, with a minimum of three measurements. The distribution 
of points (sampling pattern) is identical for all. By default, it is with 25 points evenly distributed 
over the accessible surface of the test sphere, as described in ISO 10360-5 [15]. 
With each stylus, the test sphere is measured three times. When the CMM repeatability is 
known to be poor7, the number of repetitions shall be larger (e.g. 5). 
The least squares diameter and centre coordinates of the test sphere are derived for each 
measurement. Results are the values ijDmeasstd (see Table 3), where j = 1 ... n6 indicates the 
probe stylus and i = 1 ... n5 the repeat with a same probe stylus. Further, the diameters of the 
minimum circumscribed spheres enclosing the n6 sphere centres [15] at the same repeat (the 
n6 centres at the i = 1 repeat, at the i = 2 repeat, and so on) are derived. They are indicated as 
iDMCS in Table 3. 

 

 
a) Setup for probe qualification and verification 

  
b) Probe qualification c) Probe verification 

Figure 4 Measurement setup for probe qualification and verification. 

 

                                                 
5 In the ISO/DTS 15530-2 [8], both internal and external diameter standards were used. In contrast, an 

external diameter standard only (a test sphere) is recommended here. 
6 This includes not only probing size and location errors but probing form errors as well. 
7 See previous footnote 3. 
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Table 3 Summary of measurement results of the sphere used for probe verification 

 Probe 1 Probe 2 Probe 3 Centre 

Cycle 1 11Dmeasstd 12Dmeasstd 13Dmeasstd 1DMCS 

Cycle 2 21Dmeasstd 22Dmeasstd 23Dmeasstd 2DMCS 

Cycle 3 31Dmeasstd 32Dmeasstd 33Dmeasstd 3DMCS 

 

3.2 Calculation of the measurement value 
The method may apply with or without corrections of the length and probing errors, as detected 
through the measurements of the length standards and test sphere. 
3.2.1 Calculation of the uncorrected measurement value y 
The average y of all measurements is called "uncorrected measurement value", which is 
calculated as 

𝑦𝑦 =
1

𝑛𝑛1 ∙ 𝑛𝑛2
∙�� 𝑦𝑦𝑖𝑖𝑖𝑖

𝑛𝑛1

𝑖𝑖=1

𝑛𝑛2

𝑖𝑖=1

.  

 
3.2.2 Calculation of the average scale error ES 
The average scale error ES in the region of interest is evaluated as 

𝐸𝐸S =
1

𝑛𝑛3 ∙ 𝑛𝑛4
∙��� 𝐿𝐿measstd

𝑖𝑖𝑖𝑖 − 𝐿𝐿calstd�
𝑛𝑛3

𝑖𝑖=1

𝑛𝑛4

𝑖𝑖=1

,  

 
where, Lcalstd is the calibrated value of the length standard8. 
 
3.2.3 Calculation of the probe size error ED 
The probe size error ED associated with the set of used probe styli is evaluated as 

𝐸𝐸D =
1

𝑛𝑛5 ∙ 𝑛𝑛6
∙��� 𝐷𝐷measstd

𝑖𝑖𝑖𝑖 − 𝐷𝐷calstd�
𝑛𝑛5

𝑖𝑖=1

𝑛𝑛6

𝑖𝑖=1

,  

 
where, Dcalstd is the calibrated value of the test sphere diameter. 
 
3.2.4 Calculation of the probe location error EPrbLoc 
The probe location error EPrbLoc associated with the set of used styli is evaluated as 

𝐸𝐸PrbLoc =
1
𝑛𝑛5

∙� 𝐷𝐷MSC𝑖𝑖
𝑛𝑛5

𝑖𝑖=1

.  

                                                 
8 This equation holds in the likely case that a single length standard is used, and then a single calibrated 

value exists. When more are used, the differences in the summation are taken to the relevant 
calibrated value. The double summation gets split in two: the external summation over the different 
length standards j, and the internal one over the repeats i. 
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3.2.5 Calculation of the measurement value ycorr corrected error for scale and/or probe 

size errors 
When the scale and/or probe size errors are corrected, the corrected value ycorr depends on 
the type of feature, as shown in Table 4. 
 

Table 4 Values corrected for scale and probe size errors 

Angle size 𝑦𝑦 
Angle distance 𝑦𝑦 
Radius (external) 𝑦𝑦 − 𝐸𝐸S − 𝐸𝐸D 2⁄  
Radius (internal) 𝑦𝑦 − 𝐸𝐸S + 𝐸𝐸D 2⁄  
Length size (external) 𝑦𝑦 − 𝐸𝐸S − 𝐸𝐸D 
Length size (internal) 𝑦𝑦 − 𝐸𝐸S + 𝐸𝐸D 
Length distance 𝑦𝑦 − 𝐸𝐸S 
Deviations from a CAD element 

Geometrical features related to datums 
Profile features on prismatic and "freeform" artefacts 

𝑦𝑦 − 𝐸𝐸S 

Deviation from a least squares fitted element 
Geometrical features not related to datums 𝑦𝑦 

 

3.3 Evaluation of the measurement uncertainty 
The measurement uncertainty of the measurand feature is derived as [11] 

𝑈𝑈 = 𝑘𝑘 ⋅ �|𝐸𝐸S|2 + |𝐸𝐸D|2 + |𝐸𝐸PrbLoc|2 +
𝑢𝑢rep2

𝑛𝑛1
+
𝑢𝑢geo2

𝑛𝑛2
+ 𝑢𝑢geo×dist

2 + 𝑢𝑢S2 + 𝑢𝑢D2 + 𝑢𝑢PrbLoc2 + 𝑢𝑢temp2 , 

 
where: 

𝑈𝑈 combined expanded uncertainty, 

𝑘𝑘 coverage factor,  

𝐸𝐸S average scale error of the CMM in the region of interest,  

𝐸𝐸D average probe size error,  

𝐸𝐸PrbLoc average probe location error,  

𝑢𝑢rep standard uncertainty due to repeatability,  

𝑢𝑢geo standard uncertainty due to the CMM geometry errors,  

𝑢𝑢geo×dist 
standard uncertainty due to the interaction between the CMM geometry 
errors and the distribution of points over the measured surface,  

𝑢𝑢S standard uncertainty due to the scale error,  

𝑢𝑢D standard uncertainty due to the probe size error,  

𝑢𝑢PrbLoc standard uncertainty due the probe location error, and 
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𝑢𝑢temp standard uncertainty due to temperature-related effects. 

 
|ES| and/or |ED| are to be accounted only when the scale and/or probe size errors are not 
corrected for. |ES| = |ED| = 0 when they are. 
|ED| is to be accounted for only for measurements sensitive to the stylus tip radius (bidirectional 
probing). |ED| = 0 for measurements that are not (monodirectional probing). 
|EPrbLoc| and u2PrbLoc are to be accounted only when multiple probe styli are used in a same 
orientation of the workpiece. |EPrbLoc| = 0 and u2PrbLoc = 0 when a single probe stylus is used in 
a same orientation of the workpiece.  

u2geo×dist is there only in the case of measurements of the deviation from CAD or associated 
(best-fitted) elements (form error of either a profile or a surface).  

  
3.3.1 Evaluation of urep and ugeo 
urep and ugeo are evaluated following an analysis of variance (ANOVA) approach. The repeats 
are considered as groups (subscript A) of observations affected by a random error (subscript 
e), and the within and between variances are evaluated. The sought urep and ugeo are then 
derived from such variances. 
Table 5 summarises the ANOVA approach for evaluating urep and ugeo. 
Table 5 Evaluation of urep and ugeo (ANOVA). 

 

𝑦𝑦�𝑖𝑖 =
1
𝑛𝑛1
� 𝑦𝑦𝑖𝑖𝑖𝑖
𝑛𝑛1

𝑖𝑖=1

 

𝑦𝑦� =
1

𝑛𝑛1𝑛𝑛2
�� 𝑦𝑦𝑖𝑖𝑖𝑖

𝑛𝑛2

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1

 

Sum of squares Degrees of 
freedom (DOF) Variance Expectation of 

𝑆𝑆𝐴𝐴 = ��� 𝑦𝑦�𝑖𝑖 − 𝑦𝑦��
2

𝑛𝑛2

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1

 𝑓𝑓𝐴𝐴 = 𝑛𝑛2 − 1 𝑉𝑉𝐴𝐴 =
𝑆𝑆𝐴𝐴
𝑓𝑓𝐴𝐴

 𝑢𝑢rep2 + 𝑛𝑛1𝑢𝑢geo2  

𝑆𝑆𝑒𝑒 = ��� 𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑖𝑖 �
2

𝑛𝑛2

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1

 𝑓𝑓𝑒𝑒 = (𝑛𝑛1 − 1)𝑛𝑛2 𝑉𝑉𝑒𝑒 =
𝑆𝑆𝑒𝑒
𝑓𝑓𝑒𝑒

 𝑢𝑢rep2  

𝑆𝑆 = ��� 𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦��
2

𝑛𝑛2

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1

 𝑓𝑓 = 𝑛𝑛1𝑛𝑛2 − 1   

𝑢𝑢rep2 = 𝑉𝑉e 

𝑢𝑢geo2 =
𝑉𝑉𝐴𝐴 − 𝑉𝑉𝑒𝑒
𝑛𝑛1
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Example: angle between two planes. 
The following example illustrates the uncertainty evaluation for the measurement of the angle 
size between two planes. Both planes are measured with a single stylus in each orientation 
(see Figure 5).  

 

 
Figure 5 Measurement of the angle size between two planes (Orientation 3). 

 
Example: angle between two planes. 

 Orientation 1 
(home position) Orientation 2 Orientation 3 Orientation 4 

Repeat 1/° 90.0033 90.0039 90.0033 89.9964 

Repeat 2/° 90.0033 90.0040 90.0035 89.9963 

Repeat 3/° 89.9967 90.0040 90.0036 89.9963 

𝑦𝑦�𝑗𝑗 /° 90.0011 90.0040 90.0035 89.9963 

𝑦𝑦�/° 90.0012 
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S/(°²) DOF Variance/(°²) Expectation of  

𝑆𝑆𝐴𝐴 = ��� 𝑦𝑦�𝑖𝑖 − 𝑦𝑦��
2

𝑛𝑛2

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1

=

= 0.000 110  

𝑓𝑓𝐴𝐴 = 𝑛𝑛2 − 1 = 3 𝑉𝑉𝐴𝐴 =
𝑆𝑆𝐴𝐴
𝑓𝑓𝐴𝐴

=

= 0.000 037 

𝑢𝑢rep2 + 𝑛𝑛1𝑢𝑢geo2 =
= 𝑢𝑢rep2 + 3𝑢𝑢geo2  

𝑆𝑆𝑒𝑒 = ��� 𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑖𝑖 �
2

𝑛𝑛2

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1

=

= 0.000 029 

𝑓𝑓𝑒𝑒 = (𝑛𝑛1 − 1) ∙ 𝑛𝑛2 = 8 𝑉𝑉𝑒𝑒 =
𝑆𝑆𝑒𝑒
𝑓𝑓𝑒𝑒

=

= 0.000 004 
𝑢𝑢rep2  

𝑆𝑆 = ��� 𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦��
2

𝑛𝑛2

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1

=

= 0.000 139  

𝑓𝑓 = 𝑛𝑛1 ∙ 𝑛𝑛2 − 1 = 11   

𝑢𝑢rep2 = 𝑉𝑉𝑒𝑒 = 0.000 004°² 

𝑢𝑢geo2 = (𝑉𝑉𝐴𝐴 − 𝑉𝑉𝑒𝑒) 𝑛𝑛1⁄ = 0.000 011°² 

𝑈𝑈 = 𝑘𝑘 ∙ �
𝑢𝑢rep2

𝑛𝑛1
+
𝑢𝑢geo2

𝑛𝑛2
= 3�

0.000 004
3

+
0.000 011

4
= 0.006° 

 

3.3.2 Evaluation of uS 
The uncertainty of the average scale error, uS, is evaluated as  

𝑢𝑢S2 = �
𝑈𝑈calstd,L

2
�
2

+
𝑢𝑢measstd,L,rep
2

𝑛𝑛3
+
𝑢𝑢measstd,L,geo
2

𝑛𝑛4
, 

 

where, Ucalstd,L is the expanded calibration uncertainty (k = 2) of the length standard. umeasstd,L,rep 

and umeasstd,L,geo, are evaluated following an analysis of variance (ANOVA) approach. Table 6 

summarises the ANOVA approach for evaluating umeasstd,L,rep and umeasstd,L,geo and the evaluation 
of uS. 

 

Table 6: Evaluation of umeasstd,L,rep and umeasstd,L,geo (ANOVA). 

𝐿𝐿measstd�����������𝑖𝑖 =
1
𝑛𝑛1
� 𝐿𝐿measstd

𝑖𝑖𝑖𝑖
𝑛𝑛1

𝑖𝑖=1

 

𝐿𝐿measstd����������� =
1

𝑛𝑛1𝑛𝑛2
�� 𝐿𝐿measstd

𝑖𝑖𝑖𝑖
𝑛𝑛2

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1
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Sum of squares Degrees of 
freedom (DOF) Variance Expectation of 

𝑆𝑆𝐴𝐴 = ��� 𝐿𝐿measstd�����������𝑖𝑖
𝑛𝑛4

𝑖𝑖=1

𝑛𝑛3

𝑖𝑖=1

− 𝐿𝐿measstd������������
2
 

𝑓𝑓iA = 𝑛𝑛4 − 1 𝑉𝑉𝐴𝐴 =
𝑆𝑆𝐴𝐴
𝑓𝑓𝐴𝐴

 
𝑢𝑢measstd,L,rep
2

+ 𝑛𝑛3 ∙ 𝑢𝑢measstd,L,geo
2  

𝑆𝑆𝑒𝑒 = ��� 𝐿𝐿measstd
𝑖𝑖𝑖𝑖

𝑛𝑛4

𝑖𝑖=1

𝑛𝑛3

𝑖𝑖=1

− 𝐿𝐿measstd�����������𝑖𝑖 �
2
 

𝑓𝑓e = (𝑛𝑛3 − 1) ∙ 𝑛𝑛4 𝑉𝑉𝑒𝑒 =
𝑆𝑆𝑒𝑒
𝑓𝑓𝑒𝑒

 𝑢𝑢measstd,L,rep
2  

𝑆𝑆 = ��� 𝐿𝐿measstd
𝑖𝑖𝑖𝑖

𝑛𝑛4

𝑖𝑖=1

𝑛𝑛3

𝑖𝑖=1

− 𝐿𝐿measstd������������
2
 

𝑓𝑓 = 𝑛𝑛3 ∙ 𝑛𝑛4 − 1   

𝑢𝑢measstd,L,rep
2 = 𝑉𝑉𝑒𝑒 

𝑢𝑢measstd,L,geo
2 =

𝑉𝑉𝐴𝐴 − 𝑉𝑉𝑒𝑒
𝑛𝑛3

 

 
Example: ES and uS evaluation. 

 Orientation 1 
(X axis direction) 

Orientation 2 
(Y axis direction) 

Orientation 3 
(Z axis direction) 

Repeat 1/mm 100.0019 100.0020 100.0008 

Repeat 2/mm 100.0016 100.0009 100.0010 

Repeat 3/mm 100.0020 100.0010 100.0012 

𝐿𝐿measstd���������𝑗𝑗 /mm 100.0018 100.0013 100.0010 

𝐿𝐿measstd����������� 100.0014 mm 

𝐿𝐿calstd 100.0014 mm 

𝐸𝐸S 0.0000 mm 

𝑈𝑈calstd,L 0.0004 mm 
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S/mm² DOF Variance/mm² Expectation of 
𝑆𝑆𝐴𝐴

= ��� 𝐿𝐿measstd�����������𝑖𝑖
𝑛𝑛4

𝑖𝑖=1

𝑛𝑛3

𝑖𝑖=1

− 𝐿𝐿measstd������������
2

= 0.000 001 1 

𝑓𝑓𝐴𝐴 = 𝑛𝑛4 − 1 = 2 𝑉𝑉𝐴𝐴 =
𝑆𝑆𝐴𝐴
𝑓𝑓𝐴𝐴

=

= 0.000 000 5 

𝑢𝑢measstd,L,rep
2

+ 𝑛𝑛3 ∙ 𝑢𝑢measstd,L,geo
2  

𝑆𝑆𝑒𝑒

= ��� 𝐿𝐿measstd
𝑖𝑖𝑖𝑖

𝑛𝑛4

𝑖𝑖=1

𝑛𝑛3

𝑖𝑖=1

− 𝐿𝐿measstd�����������𝑖𝑖 �
2

= 0.000 000 9 

𝑓𝑓𝑒𝑒 = (𝑛𝑛3 − 1) ∙ 𝑛𝑛4 = 6 𝑉𝑉𝑒𝑒 =
𝑆𝑆𝑒𝑒
𝑓𝑓𝑒𝑒

=

= 0.000 000 2 
𝑢𝑢measstd,L,rep
2  

𝑆𝑆𝑒𝑒

= ��� 𝐿𝐿measstd
𝑖𝑖𝑖𝑖

𝑛𝑛4

𝑖𝑖=1

𝑛𝑛3

𝑖𝑖=1

− 𝐿𝐿measstd�����������𝑖𝑖 �
2

= 0.000 002 0 

𝑓𝑓 = 𝑛𝑛3 ∙ 𝑛𝑛4 − 1 = 8   

𝑢𝑢measstd,L,rep
2 = 𝑉𝑉𝑒𝑒 = 0.000  000 2 mm² 

𝑢𝑢measstd,L,geo
2 = 𝑉𝑉𝐴𝐴−𝑉𝑉𝑒𝑒

𝑛𝑛3
= 0.000 000 1 mm² 

𝑢𝑢S2 = �
𝑈𝑈calstd,L

2
�
2

+
𝑢𝑢measstd,L,rep
2

𝑛𝑛3
+
𝑢𝑢measstd,L,geo
2

𝑛𝑛4
= ��

0.0004
2

�
2

+
0.000 000 2

3
+

0.000 000 1
3

�mm2  

= 0.000 000 1 mm2 

 
Example: Distance of two inner cylinders. 
Let us apply the above evaluation to a complete example: the distance of the centres of two 
inner cylinders. The measurements are done with a single stylus in each orientation (see 
Figure 6). 

 
Figure 6 Measurement of the distance of two cylinders centres (home position). 

Some of uncertainty components are not relevant in this measurement: 

𝐸𝐸D = 0 (monodirectional probing) 

𝐸𝐸PrbLoc (a single stylus is used in each orientation) 
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𝑢𝑢geo×dist
2  (not a form measurement) 

The effect of the temperature variation is omitted in this example. 
As the CMM used is extremely high quality and well temperature compensated, the scale error 
derived from the measurements of a standard of length resulted null, 𝐸𝐸S = 0. Its variance–
evaluated as in the previous example–resulted 𝑢𝑢S2 = 0.000 0000 1 mm². 

Example: distance of the centres of two inner cylinders. 

 Orientation 1 
(home position) Orientation 2 Orientation 3 Orientation 4 

Repeat 1/mm 98.9892 98.9891 98.9894 98.9898 

Repeat 2/mm 98.9889 98.9889 98.9891 98.9896 

Repeat 3/mm 98.9890 98.9889 98.9891 98.9895 

𝑦𝑦𝚥𝚥����/mm 98.9890 98.9890 98.9892 98.9896 

𝑦𝑦� 98.9892 mm 

S/mm² DOF Variance/mm² Expectation of 

𝑆𝑆𝐴𝐴 = ��� 𝑦𝑦�𝑖𝑖 − 𝑦𝑦��
2

𝑛𝑛2

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1

=

= 0.000 000 7 

𝑓𝑓𝐴𝐴 = 𝑛𝑛2 − 1 = 3 𝑉𝑉𝐴𝐴 =
𝑆𝑆𝐴𝐴
𝑓𝑓𝐴𝐴

=

= 0.000 000 2 

𝑢𝑢rep2 + 𝑛𝑛1𝑢𝑢geo2 =
= 𝑢𝑢rep2 + 3𝑢𝑢geo2  

𝑆𝑆𝑒𝑒 = ��� 𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑖𝑖 �
2

𝑛𝑛2

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1

=

= 0.000 000 2 

𝑓𝑓𝑒𝑒 = (𝑛𝑛1 − 1) ∙ 𝑛𝑛2
= 8 

𝑉𝑉𝑒𝑒 =
𝑆𝑆𝑒𝑒
𝑓𝑓𝑒𝑒

=

= 0.000 000 0 
𝑢𝑢rep2  

𝑆𝑆 = ��� 𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦��
2

𝑛𝑛2

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1

=

= 0.000 000 9 

𝑓𝑓 = 𝑛𝑛1 ∙ 𝑛𝑛2 − 1 = 11   

𝑢𝑢rep2 = 𝑉𝑉𝑒𝑒 = 0.000 000 0 mm² 

𝑢𝑢geo2 = (𝑉𝑉𝐴𝐴−𝑉𝑉𝑒𝑒)
𝑛𝑛1

= 0.000 000 1 mm² 

𝐸𝐸S = 0.0000 mm² 𝑢𝑢S2 = 0.000 000 1 mm² 

(details omitted for brevity; see previous example) 

𝑈𝑈 = 𝑘𝑘 ∙ �|𝐸𝐸S|2 +
𝑢𝑢rep2

𝑛𝑛1
+
𝑢𝑢geo2

𝑛𝑛2
+ 𝑢𝑢S2

= 3�0.000 000 0 +
0.000 000 0

3
+

0.000 000 1
4

+ 0.000 000 1 mm = 0.0012 mm 

if the scale error in not corrected for, 𝑦𝑦�, or 
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𝑈𝑈 = 𝑘𝑘 ∙ �
𝑢𝑢rep2

𝑛𝑛1
+
𝑢𝑢geo2

𝑛𝑛2
+ 𝑢𝑢𝑆𝑆2 = 3�

0.000 000 0
3

+
0.000 000 1

4
+ 0.000 000 1 mm = 0.0012 mm 

if the scale error in corrected for, 𝑦𝑦� − 𝐸𝐸S. 

 

3.3.3 Evaluation of uD 
The uncertainty due to the average probe size error, uD, is derived from the following equation;  

𝑢𝑢D2 = �
𝑈𝑈calstd,D

2
�
2

+
𝑢𝑢measstd,D,rep
2

𝑛𝑛5
+
𝑢𝑢measstd,D,geo
2

𝑛𝑛6
, 

 
Where Ucalstd,D is the expanded calibration uncertainty (k = 2) of the test sphere as reported in 
its calibration certificate, and umeasstd,D,rep and umeasstd,D,geo, are evaluated with the ANOVA 
approach (see Table 12). 
 

Table 7 Evaluation of umeasstd,D,rep and umeasstd,D,geo (ANOVA). 

𝐷𝐷measstd�����������𝑖𝑖 =
1
𝑛𝑛5
� 𝐷𝐷measstd

𝑖𝑖𝑖𝑖
𝑛𝑛5

𝑖𝑖=1

 

𝐷𝐷measstd����������� =
1

𝑛𝑛5𝑛𝑛6
�� 𝐷𝐷measstd

𝑖𝑖𝑖𝑖
𝑛𝑛6

𝑖𝑖=1

𝑛𝑛5

𝑖𝑖=1

 

Sum of squares Degrees of 
freedom (DOF) Variance Expectation of 

𝑆𝑆𝐴𝐴 = ��� 𝐷𝐷measstd�����������𝑖𝑖
𝑛𝑛6

𝑖𝑖=1

𝑛𝑛5

𝑖𝑖=1

− 𝐷𝐷measstd������������
2
 

𝑓𝑓𝐴𝐴 = 𝑛𝑛6 − 1 𝑉𝑉𝐴𝐴 =
𝑆𝑆𝐴𝐴
𝑓𝑓𝐴𝐴

 
𝑢𝑢measstd,L,rep
2

+ 𝑛𝑛5 ∙ 𝑢𝑢measstd,L,geo
2  

𝑆𝑆𝑒𝑒 = ��� 𝐷𝐷measstd
𝑖𝑖𝑖𝑖

𝑛𝑛6

𝑖𝑖=1

𝑛𝑛5

𝑖𝑖=1

− 𝐷𝐷measstd�����������𝑖𝑖 �
2
 

𝑓𝑓𝑒𝑒 = (𝑛𝑛5 − 1) ∙ 𝑛𝑛4 𝑉𝑉𝑒𝑒 =
𝑆𝑆𝑒𝑒
𝑓𝑓𝑒𝑒

 𝑢𝑢measstd,L,rep
2  

𝑆𝑆 = ��� 𝐷𝐷measstd
𝑖𝑖𝑖𝑖

𝑛𝑛6

𝑖𝑖=1

𝑛𝑛5

𝑖𝑖=1

− 𝐷𝐷measstd������������
2
 

𝑓𝑓 = 𝑛𝑛5 ∙ 𝑛𝑛6 − 1   

𝑢𝑢measstd,D,rep
2 = 𝑉𝑉𝑒𝑒 

𝑢𝑢measstd,D,geo
2 =

𝑉𝑉𝐴𝐴 − 𝑉𝑉𝑒𝑒
𝑛𝑛3
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Example: ED and uD evaluation. 

 Probe 1 Probe 2 Probe 3 

Repeat 1/mm 29.9869 29.9861 29.9865 

Repeat 2/mm 29.9868 29.9860 29.9866 

Repeat 3/mm 29.9868 29.9861 29.9865 

𝐷𝐷measstd����������𝑗𝑗 /mm 29.9868 29.9861 29.9865 

𝐷𝐷measstd����������� 29.9865 mm 

𝐷𝐷calstd 29.9863 mm 

𝐷𝐷L 0.0002 mm 

𝑈𝑈calstd,D 0.000 15 mm 

S/mm² DOF Variance/mm² Expectation of 
𝑆𝑆𝐴𝐴

= ��� 𝐷𝐷measstd�����������𝑖𝑖
𝑛𝑛6

𝑖𝑖=1

𝑛𝑛5

𝑖𝑖=1

− 𝐷𝐷measstd������������
2

= 0.000 000 8 

𝑓𝑓𝐴𝐴 = 𝑛𝑛4 − 1 = 2 𝑉𝑉𝐴𝐴 =
𝑆𝑆𝐴𝐴
𝑓𝑓𝐴𝐴

=

= 0.000 000 4 

𝑢𝑢measstd,L,rep
2

+ 𝑛𝑛5 ∙ 𝑢𝑢measstd,L,geo
2  

𝑆𝑆𝑒𝑒

= ��� 𝐷𝐷measstd
𝑖𝑖𝑖𝑖

𝑛𝑛6

𝑖𝑖=1

𝑛𝑛5

𝑖𝑖=1

− 𝐷𝐷measstd�����������𝑖𝑖 �
2

= 0.000 000 0 

𝑓𝑓𝑒𝑒 = (𝑛𝑛5 − 1) ∙ 𝑛𝑛6 = 6 𝑉𝑉𝑒𝑒 =
𝑆𝑆𝑒𝑒
𝑓𝑓𝑒𝑒

=

= 0.000 000 0 
𝑢𝑢measstd,D,rep
2  

𝑆𝑆e

= ��� 𝐷𝐷measstd
𝑖𝑖𝑖𝑖

𝑛𝑛6

𝑖𝑖=1

𝑛𝑛5

𝑖𝑖=1

− 𝐷𝐷measstd
𝚥𝚥��������������

2

= 0.000 000 8 

𝑓𝑓 = 𝑛𝑛5 ∙ 𝑛𝑛6 − 1 = 8   

𝑢𝑢measstd,D,rep
2 = 𝑉𝑉𝑒𝑒 = 0.000  000 0 mm² 

𝑢𝑢measstd,D,geo
2 = 𝑉𝑉𝐴𝐴−𝑉𝑉𝑒𝑒

𝑛𝑛5
= 0.000 000 1 mm² 

𝑢𝑢D2 = �
𝑈𝑈calstd,D

2
�
2

+
𝑢𝑢measstd,D,rep
2

𝑛𝑛5
+
𝑢𝑢measstd,D,geo
2

𝑛𝑛6

= ��
0.000 15

2
�
2

+
0.000 000 0

3
+

0.000 000 1
3

�mm2  = 0.000 000 1 mm2 

 

Example: the diameter of an inner cylinder. 
Let us apply the above evaluation to another complete example: the diameter of an inner 
cylinder. The measurements are done with a single stylus in each orientation (see Figure 7). 
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Figure 7 Measurement of the diameter of an inner cylinder (Orientation 4). 

Some of uncertainty components are not relevant in this measurement: 

𝐸𝐸PrbLoc (a single stylus is used in each orientation) 

𝑢𝑢geo×dist
2  (not a form measurement) 

The effect of the temperature variation is omitted in this example. 

As in the previous complete example, some evaluation details (namely of 𝐸𝐸S,𝑢𝑢S,𝐸𝐸D,𝑢𝑢D) are 
omitted for brevity. 
 
Example: diameter of an inner cylinder. 

 Orientation 1 
(home position) Orientation 2 Orientation 3 Orientation 4 

Repeat 1/mm 10.1759 10.1766 10.1787 10.1741 

Repeat 2/mm 10.1767 10.1770 10.1794 10.1751 

Repeat 3/mm 10.1770 10.1767 10.1794 10.1756 

𝑦𝑦�𝑗𝑗 /mm 10.1765 10.1768 10.1792 10.1749 

𝑦𝑦� 10.1769 mm 
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S/mm² DOF Variance/mm² Expectation of 

𝑆𝑆𝐴𝐴 = ��� 𝑦𝑦�𝑖𝑖 − 𝑦𝑦��
2

𝑛𝑛2

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1

=

= 0.000 027 4 

𝑓𝑓𝐴𝐴 = 𝑛𝑛2 − 1 = 3 𝑉𝑉𝐴𝐴 =
𝑆𝑆𝐴𝐴
𝑓𝑓𝐴𝐴

=

= 0.000 009 1 

𝑢𝑢rep2 + 𝑛𝑛1𝑢𝑢geo2 =
= 𝑢𝑢rep2 + 3𝑢𝑢geo2  

𝑆𝑆𝑒𝑒 = ��� 𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑖𝑖 �
2

𝑛𝑛2

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1

=

= 0.000 002 2 

𝑓𝑓𝑒𝑒 = (𝑛𝑛1 − 1) ∙ 𝑛𝑛2
= 8 

𝑉𝑉𝑒𝑒 =
𝑆𝑆𝑒𝑒
𝑓𝑓𝑒𝑒

=

= 0.000 000 3 
𝑢𝑢rep2  

𝑆𝑆 = ��� 𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦��
2

𝑛𝑛2

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1

=

= 0.000 029 7 

𝑓𝑓 = 𝑛𝑛1 ∙ 𝑛𝑛2 − 1 = 11   

𝑢𝑢rep2 = 𝑉𝑉𝑒𝑒 = 0.000 000 3 mm² 

𝑢𝑢geo2 = (𝑉𝑉𝐴𝐴−𝑉𝑉𝑒𝑒)
𝑛𝑛1

= 0.000 003 0 mm² 

𝐸𝐸S = 0.0000 mm 𝑢𝑢S2 = 0.000 000 1 mm² 

(details omitted for brevity) 

|𝐸𝐸D|2 = 0.000 000 6 mm² 𝑢𝑢D2 = 0.000 000 3 mm² 

(details omitted for brevity) 

𝑈𝑈 = 𝑘𝑘 ∙ �|𝐸𝐸S|2 + |𝐸𝐸D|2 +
𝑢𝑢rep2

𝑛𝑛1
+
𝑢𝑢geo2

𝑛𝑛2
+ 𝑢𝑢S2 + 𝑢𝑢D2

= 3�0.000 000 0 + 0.000 000 6 +
0.000 000 3

3
+

0.000 003 0
4

+ 0.000 000 1 + 0.000 000 3 mm

= 0.0042 mm 

if neither the scale nor the probe size error are corrected for, 𝑦𝑦�, or 
 

𝑈𝑈 = 𝑘𝑘 ∙ �|𝐸𝐸D|2 +
𝑢𝑢rep2

𝑛𝑛1
+
𝑢𝑢geo2

𝑛𝑛2
+ 𝑢𝑢S2 + 𝑢𝑢D2

= 3�0.000 000 6 +
0.000 000 3

3
+

0.000 003 0
4

+ 0.000 000 1 + 0.000 000 3 mm = 0.0041 mm 

if the probe size error only in corrected for, 𝑦𝑦� + 𝐸𝐸D, or 

𝑈𝑈 = 𝑘𝑘 ∙ �
𝑢𝑢rep2

𝑛𝑛1
+
𝑢𝑢geo2

𝑛𝑛2
+ 𝑢𝑢S2 + 𝑢𝑢D2

= 3�
0.000 000 3

3
+

0.000 003 0
4

+ 0.000 000 1 + 0.000 000 3 mm = 0.0034 mm 

if the both the scale and the probe size error are corrected for, 𝑦𝑦� − 𝐸𝐸S + 𝐸𝐸D. 
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3.3.4 Evaluation of uPrbLoc 
The uncertainty of the average probe location error, uPrbLoc, is derived from the following 
equation:  

𝑢𝑢PrbLoc2 =
|𝐸𝐸PrbLoc|2

12
 

 

3.3.5 Evaluation of ugeo×dist 
The local distances of the measured points to the ideal surface are measured. The form error 
is obtained as the range of these distances. This uncertainty component estimates the 
uncertainty of the local form deviations, 𝑈𝑈Point.  

The uncertainty of the overall form deviations is evaluated as √2𝑈𝑈Point, as the form error is the 
difference of the extreme values (range) of the local deviations [8]9. n7 points are chosen to 
evaluate the uncertainty contributor ugeo×dist. The points may be those already used to evaluate 
the form deviation, or sampled additionally for the purpose.  

The measured values ijky involved in this evaluation are summarised in Table 10, with j = 1 ... n2 
indicating the orientations, i = 1 ... n1 the measurement repeats within the same orientation, 
and k = 1 ... n7 the measurement points in the same repetition. 

 
Table 8 Summary of measured points for the evaluation of ugeo×dist. 

 Orientation 1 
(home position) Orientation 2 Orientation 3 Orientation 4 

Repeat 1 

111y 121y 131y 141y 

� � � � 

11n7y 12n7y 13n7y 14n7y 

Repeat 2 

211y 221y 231y 241y 

� � � � 

21n7y 22n7y 23n7y 24n7y 

Repeat 3 

311y 321y 331y 341y 

� � � � 

31n7y 32n7y 33n7y 34n7y 

 

urep, ugeo and ugeo×dist are evaluated as summarised in Table 9. The ANOVA approach is 
two-level in this case, as the level of the sampled points adds on that of the orientations.  

                                                 
9 Given a set of spastically independent random variables ξI, i ∈ [1…p], the uncertainty of its range 

r = ξmax - ξmin is not simply the quadratic sum of the uncertainties of the maximum and minimum values, 
as the equation may suggests. In fact, the range is a case of order statistics, that is, sorting the values 
in the set to get the minimum and maximum values at the extremes alters the simplistic quadratic 
summation. This alteration decreases asymptotically with p. In the usual case of a reasonable number 
of points for a form measurement, the simple quadratic sum is a good estimate of the range 
uncertainty, particularly in coordinate metrology where the many other difficulties make this subtlety 
negligible. 



EUCoM D1 Report: WP1 A posteriori (type A) method 11/2021 

23 
 

This ANOVA exercise evaluates not only ugeo×dist but urep and ugeo as well. udist (the standard 
deviation of the distribution of the point distances to the surface) is also evaluated but not 
added explicitly because already accounted for. 
 

Table 9 Evaluation of urep, ugeo and ugeo×dist (ANOVA). 

𝑦𝑦�𝑖𝑖𝑗𝑗 =
1
𝑛𝑛1
� 𝑦𝑦𝑖𝑖𝑖𝑖𝑗𝑗
𝑛𝑛1

𝑖𝑖=1

 

𝑦𝑦�𝑖𝑖 =
1

𝑛𝑛1𝑛𝑛7
�� 𝑦𝑦𝑖𝑖𝑖𝑖𝑗𝑗

𝑛𝑛7

𝑗𝑗=1

𝑛𝑛1

𝑖𝑖=1

 

𝑦𝑦�𝑗𝑗 =
1

𝑛𝑛1𝑛𝑛2
�� 𝑦𝑦𝑖𝑖𝑖𝑖𝑗𝑗

𝑛𝑛7

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1

 

𝑦𝑦��� =
1

𝑛𝑛1𝑛𝑛2𝑛𝑛7
��� 𝑦𝑦𝑖𝑖𝑖𝑖𝑗𝑗

𝑛𝑛7

𝑗𝑗=1

𝑛𝑛2

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1

 

Sum of squares Degrees of 
freedom (DOF) Variance Expectation of 

𝑆𝑆𝐴𝐴 = ���� 𝑦𝑦�𝑖𝑖 − 𝑦𝑦����
2

𝑛𝑛7

𝑗𝑗=1

𝑛𝑛2

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1

 𝑓𝑓𝐴𝐴 = 𝑛𝑛2 − 1 𝑉𝑉𝐴𝐴 =
𝑆𝑆𝐴𝐴
𝑓𝑓𝐴𝐴

 
𝑛𝑛1𝑛𝑛7𝑢𝑢geo2 + 𝑛𝑛1𝑢𝑢geo×dist

2

+ 𝑢𝑢rep2  

𝑆𝑆𝐵𝐵 = ���� 𝑦𝑦�𝑗𝑗 − 𝑦𝑦����
2

𝑛𝑛7

𝑗𝑗=1

𝑛𝑛2

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1

 𝑓𝑓𝐵𝐵 = 𝑛𝑛7 − 1 𝑉𝑉𝑒𝑒 =
𝑆𝑆𝑒𝑒
𝑓𝑓𝑒𝑒

 
𝑛𝑛1𝑛𝑛2𝑢𝑢dist2 + 𝑛𝑛1𝑢𝑢geo×dist

2

+ 𝑢𝑢rep2  

𝑆𝑆𝐴𝐴×𝐵𝐵 = 

= ���� 𝑦𝑦�𝑖𝑖𝑗𝑗 − 𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑗𝑗
𝑛𝑛7

𝑗𝑗=1

𝑛𝑛2

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1

+ 𝑦𝑦����
2
 

𝑓𝑓𝐴𝐴×𝐵𝐵 =
= (𝑛𝑛2 − 1)(𝑛𝑛7 − 1) 𝑉𝑉𝐴𝐴×𝐵𝐵 =

𝑆𝑆𝐴𝐴×𝐵𝐵

𝑓𝑓𝐴𝐴×𝐵𝐵
 𝑛𝑛1𝑢𝑢geo×dist

2 + 𝑢𝑢rep2  

𝑆𝑆𝑒𝑒 = ���� 𝑦𝑦𝑖𝑖𝑖𝑖𝑗𝑗 − 𝑦𝑦�𝑖𝑖𝑗𝑗 �
2

𝑛𝑛7

𝑗𝑗=1

𝑛𝑛2

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1

 𝑓𝑓𝑒𝑒 = (𝑛𝑛1 − 1)𝑛𝑛2𝑛𝑛7 𝑉𝑉𝑒𝑒 =
𝑆𝑆𝑒𝑒
𝑓𝑓𝑒𝑒

 𝑢𝑢𝑟𝑟𝑒𝑒𝑟𝑟2  

𝑆𝑆 = ���� 𝑦𝑦𝑖𝑖𝑖𝑖𝑗𝑗 − 𝑦𝑦����
2

𝑛𝑛7

𝑗𝑗=1

𝑛𝑛2

𝑖𝑖=1

𝑛𝑛1

𝑖𝑖=1

 𝑓𝑓 = 𝑛𝑛1𝑛𝑛2𝑛𝑛7 − 1   
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𝑢𝑢rep2 = 𝑉𝑉𝑒𝑒 

𝑢𝑢geo×dist
2 =

𝑉𝑉𝐴𝐴×𝐵𝐵 − 𝑉𝑉𝑒𝑒
𝑛𝑛1

 

𝑢𝑢dist2 =
𝑉𝑉𝐴𝐴 − 𝑉𝑉𝐴𝐴×𝐵𝐵

𝑛𝑛7
 

(not added to the final uncertainty, as already accounted for) 

𝑢𝑢geo2 =
𝑉𝑉𝐵𝐵 − 𝑉𝑉𝑒𝑒

(𝑛𝑛2 − 1)𝑛𝑛7
 

 
Example: flatness measurement. 
The following example shows the uncertainty evaluation for a flatness measurement. The 
plane is measured with a single stylus in each orientation (see Figure 8). Each plane is 
measured over 𝑛𝑛7 = 12 points. 

 

 
Figure 8 Measurement of flatness (Orientation 3). 

 
Example: flatness measurement. 

 Orientation 1 
(home position) Orientation 2 Orientation 3 Orientation 4 

Repeat 1/mm 

0.0029 0.0026 0.0007 0.0009 

� � � � 

-0.0019 -0.0021 -0.0012 -0.0008 

Repeat 2/mm 
0.0020 0.0021 0.0007 0.0003 

� � � � 
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-0.0017 -0.0019 -0.0013 -0.0008 

Repeat 3/mm 

0.0015 0.0019 0.0008 0.0000 

� � � � 

-0.0015 -0.0019 -0.0012 -0.0007 

𝑦𝑦��� 0.0000 mm 

S/mm² DOF Variance/mm² Expectation of 

𝑆𝑆𝐴𝐴 = 0.000 200 58 𝑓𝑓𝐴𝐴 = 𝑛𝑛7 − 1 = 11 𝑉𝑉𝐴𝐴 =
𝑆𝑆𝐴𝐴
𝑓𝑓𝐴𝐴

=

= 0.000 018 23 

𝑛𝑛1𝑛𝑛7𝑢𝑢geo2 + 𝑛𝑛1𝑢𝑢geo×dist
2

+ 𝑢𝑢rep2 =
= 36𝑢𝑢geo2 + 3𝑢𝑢geo×dist

2

+ 𝑢𝑢rep2  

𝑆𝑆𝐵𝐵 = 0.000 000 07 𝑓𝑓𝐵𝐵 = 𝑛𝑛2 − 1 = 3 𝑉𝑉𝐵𝐵 =
𝑆𝑆𝐵𝐵
𝑓𝑓𝐵𝐵

=

= 0.000 000 02 

𝑛𝑛1𝑛𝑛2𝑢𝑢dist2 + 𝑛𝑛1𝑢𝑢geo×dist
2

+ 𝑢𝑢rep2 =
= 12𝑢𝑢dist2 + 3𝑢𝑢geo×dist

2

+ 𝑢𝑢rep2  

𝑆𝑆𝐴𝐴×𝐵𝐵
= 0.000 014 11 

𝑓𝑓𝐴𝐴×𝐵𝐵
= (𝑛𝑛2 − 1)(𝑛𝑛7
− 1) = 33 

𝑉𝑉𝐴𝐴×𝐵𝐵 =
𝑆𝑆𝐴𝐴×𝐵𝐵

𝑓𝑓𝐴𝐴×𝐵𝐵
=

= 0.000 000 43 

𝑛𝑛1𝑢𝑢geo×dist
2 + 𝑢𝑢rep2  

= 3𝑢𝑢geo×dist
2 + 𝑢𝑢rep2  

𝑆𝑆𝑒𝑒 = 0.000 027 5 
𝑓𝑓𝑒𝑒
= (𝑛𝑛1 − 1)𝑛𝑛2𝑛𝑛7
= 96 

𝑉𝑉𝑒𝑒 =
𝑆𝑆𝑒𝑒
𝑓𝑓𝑒𝑒

=

= 0.000 000 03 
𝑢𝑢rep2  

𝑆𝑆 = 0.000 217 51 𝑓𝑓 = 𝑛𝑛1𝑛𝑛2𝑛𝑛7 − 1
= 143   

𝑢𝑢rep2 = 𝑉𝑉𝑒𝑒 = 0.000 000 03 mm² 

𝑢𝑢geo×dist
2 = 𝑉𝑉𝐴𝐴×𝐵𝐵−𝑉𝑉𝑒𝑒

𝑛𝑛1
= 0.000 000 13 mm² 

𝑢𝑢dist2 = 𝑉𝑉𝐴𝐴−𝑉𝑉𝐴𝐴×𝐵𝐵
𝑛𝑛7

= 0.000 001 5 mm² 

(not added to the final uncertainty, as already accounted for) 

𝑢𝑢geo2 = 𝑉𝑉𝐵𝐵−𝑉𝑉𝑒𝑒
(𝑛𝑛2−1)𝑛𝑛7

= −2.8 × 10−10 mm² → 0 

(forced to zero because ugeo is imaginary due to rounding [16]) 

𝑈𝑈 = √2𝑘𝑘�
𝑢𝑢rep2

𝑛𝑛1
+

𝑢𝑢geo2

𝑛𝑛2
+ 𝑢𝑢geo×dist

2 = 3√2�0.000 000 03
3

+ 0
4

+ 0.000 000 13 mm =

0.0016 mm  

 



EUCoM D1 Report: WP1 A posteriori (type A) method 11/2021 

26 
 

3.3.6 Evaluation of utemp 
The procedure described above is insensitive to thermal errors: repeats and reversals would 
all be affected by the same thermal error10 and the ANOVA analysis would be ineffective. As 
a consequence, this uncertainty component is evaluated separately, typically a priori (type B). 
Strictly speaking, this is not part of the a posteriori (type A) evaluation method described in this 
document. It is briefly mentioned here for two reasons: 

1. Thermal effects are usually extremely important in dimensional measurements and at 
least a reminder to account for them is essential. 

2. This method is intended to give input to a future ISO 15530-2. In this view, this 
uncertainty component must be mentioned, even if evaluated a priori, to give the 
standard readers guidance and not to mislead them in forgetting about it. 

The evaluation procedure for utemp is taken from section A.9 of the ISO/DTS 15530-2 [8] with 
no modifications. This uncertainty component is a combination of the uncertainty due to the 
temperatures of workpiece and CMM scales and to the their CTE (Coefficient of Thermal 
Expansion). This evaluation is rather typical in dimensional metrology. Further general 
guidance is found in [17]. 
 
3.4 Special cases 
 
3.4.1 Poor available information 

In evaluating the uncertainty in form measurement (see 3.3.5), urep, ugeo and ugeo×dist are 
evaluated from the local form deviations of all probed points. This information is available to 
the CMM software and stored in its internal memory. Unfortunately, many CMM software 
interfaces do not make this information available to the user. The information they disclose is 
limited to the two values of local peak (P) and valley (V) deviations, or even to the single 
unsigned peak-to-valley value (W = P – V). 
In such cases, the maximum entropy principle is followed: the unknown distribution of local 
form deviations is assumed to be the one that maximizes the information entropy. 
 
3.4.1.1 Two values, peak (P) and valley (V) 
The peak and valley values yielded along the procedure are arranged as shown in Table 10. 
 
Table 10 Summary of form measurement results. 

 Orientation 1 
(home position) Orientation 2 Orientation 3 Orientation 4 

Repeat 1 
11V 12V 13V 14V 
11P 12P 13P 14P 

Repeat 2 
21V 22V 23V 24V 
21P 22P 23P 24P 

Repeat 3 
31V 32V 33V 34V 
31P 32P 33P 34P 

                                                 
10 This is when the temperature is uniform in time and space. When it is not, additional errors are 

introduced, which are not properly captured by the experimental procedure. 
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urep, ugeo and ugeo×dist can be evaluated as described in 3.3 with n7 = 2 regardless of the actual 
number of measured points11. 
 
3.4.1.2 Single unsigned peak-to-valley value, W 
When the value W only is available (Table 11), then n7 = 1 and the ANOVA equations in Table 
9 fail as the number of some degrees of freedom drops to zero: at least two values are needed. 
The total form error is then split arbitrarily in two peak and valley values such as their difference 
is W. 
Following the maximum entropy principle, the peak and valley values are simply taken 
symmetrically about zero, that is, P = -V. Table 12 results. 

 
Table 11 Summary of form measurement results. 

 Orientation 1 
(home position) Orientation 2 Orientation 3 Orientation 4 

Repeat 1 11W 12W 13W 14W 

Repeat 2 21W 22W 23W 24W 

Repeat 3 31W 32W 33W 34W 

 
Table 12 Modified summary of form measurement results 

 Orientation 1 
(home position) Orientation 2 Orientation 3 Orientation 4 

Repeat 1 
−11W/2 −12W/2 −13W/2 −14W/2 
11W/2 12W/2 13W/2 14W/2 

Repeat 2 
−21W/2 −22W/2 −23W/2 −24W/2 
21W/2 22W/2 23W/2 24W/2 

Repeat 3 
−31W/2 −32W/2 −33W/2 −34W/2 
31W/2 32W/2 33W/2 34W/2 

 

urep, ugeo and ugeo×dist can be evaluated as described in 3.3 with n7 = 2 regardless of the actual 
number of measured points. 
 

                                                 
11 The derivation of data is expected to lead to overestimation for two reasons: 

1. The number of points is not sufficient to neglect the effect of sorting the values in each set ij 
(see footnote 9); 

2. The maximum entropy principle would lead to assuming the missing populations of local form 
deviations as uniform in the intervals � 𝑉𝑉𝑖𝑖𝑖𝑖 , 𝑃𝑃𝑖𝑖𝑖𝑖 �. This would lead to standard uncertainties of 
� 𝑉𝑉𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑖𝑖𝑖𝑖 � √12⁄ , whereas the equivalent standard deviations based on the extreme values only 
amount to � 𝑉𝑉𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑖𝑖𝑖𝑖 � √2⁄ . 

 These aspects were not investigated in depth and may lead in future to a more favourable evaluation 
of the uncertainty. 
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3.4.2 Extension to scanning 
When a form measurement is done in scanning probing mode, the number of sampled points 
is affected by the scanning parameters such as the scanning speed and the sampling point 
density. Even if they are kept the same throughout the measurement procedure, different 
repeats may result in different numbers of sampled points, particularly when the points are 
very many. Arranging them in tables such as Table 8 may lead to uneven columns: the 
correspondence among related values is lost. 
To overcome this problem, a modification of the method described in 3.3.5 is required. 
For a precise uncertainty estimation, the ANOVA analysis applies with unequal sampling sizes. 
In this case, ugeo × dist is removed from the uncertainty evaluation because of the lack of 
correspondence among points in the measurement sequence. 
For a practical uncertainty estimation, the ANOVA analysis with the maximum entropy model 
applies. The set of sampled points of any repeat is replaced by its maximum and minimum 
values, and the procedure described in 3.4.1 applies, including (ugeo×dist). 

 

3.4.3 Prismatic tolerance zones 
Derived features (such as a median line of a cylinder) may be subject to tolerances with 
prismatic tolerance zones. They possess a defined axis and all their cross sections with any 
plane orthogonal to the axis are identical. The cross sections can be either rectangular or 
circular. An extreme case of the former is when a dimensions of the rectangle goes to infinite, 
that is, when the rectangle degenerates to a strip and the prism to the space between two 
parallel planes. 
Prismatic tolerance zones with rectangular cross-section [18]12 control form deviations along 
two perpendicular directions aligned to the rectangle (secondary datum). The measurands are 
then two: the local form deviations along each of such directions. The local form deviations are 
signed and the uncertainty evaluation procedures described either in 3.3 (complete evaluation) 
or in 3.4.1.1 or 3.4.1.2 (reduced evaluation) are applicable.  
In prismatic tolerance zones with circular cross-section (cylinders) [18] 13 , the local form 
deviations are the distance to the cylinder axis, which is unsigned.  The maximum entropy 
approach then applies, very similarly to 3.4.1.2. The only difference is that Table 12 therein is 
modified to Table 13: 
 

                                                 
12 For example, this is the case of a double perpendicularity tolerance of a same feature (such as the 

median line of a cylinder) with reference to a datums system that constrains all three orientation angles 
(see [18] Figure 132). The tolerances in the two directions orthogonal to the primary datum are 
independent, generating a rectangular cross-section tolerance zone. 

13 For example, this is the case of a perpendicularity tolerance with a ø sign in the callout, of a feature 
(such as the median line of a cylinder) with reference to (at least) a primary datum constraining two 
orientation angles (see [18] Figure 134). 
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Table 13 Modified summary of form measurement results 

 Orientation 1 
(home position) Orientation 2 Orientation 3 Orientation 4 

Repeat 1 
−11W −12W −13W −14W 
11W 12W 13W 14W 

Repeat 2 
−21W −22W −23W −24W 
21W 22W 23W 24W 

Repeat 3 
−31W −32W −33W −34W 
31W 32W 33W 34W 

 
When the form deviation is signed (as in 3.4.1.2), the maximum entropy approach leads to 
attributing half value to the positive and half to the negative range. Let us reduce the case of 
unsigned form deviations to the previous case of signed ones. 
Let us define a coordinate system having the z axis coincident with the axis of the cylinder (the 
tolerance zone) and the xz plane chosen arbitrary. Let us define positive directions of the z 
and x axes arbitrarily. Let us define the operation roto-projection as follows: given a point in 
space, rotate it clockwise about z until it hits the xz plane; the hit point is the roto-projected 
point. Let us rot-project all measured points. The roto-projected points are still off the z axis of 
the same amount as the original ones, but all lay in the xz plane. The local form deviations are 
expressed with the coordinates x only, which are signed14. The information that the maximum 
local deviation is W–i.e. the cylinder radius–is reflected to the coordinate range [−W, W]–the 
cylinder diameter. 
 
3.4.3.1 Straightness 
The toleranced feature controlled by a straightness tolerance can be either 2D15 or 3D16. 
In the former case, the tolerance zone is the strip in the intersection plane between two parallel 
lines. The local form deviations are signed as long as a positive direction is defined in the 
intersection plane. A typical choice is positive for points laying in air, negative for points laying 
in the material. The uncertainty evaluation procedures described either in 3.3 (complete 
evaluation) or in 3.4.1.1 or 3.4.1.2 (reduced evaluation) are applicable. 
In the latter case, the tolerance zone has a prismatic form, either a parallelepiped or a cylinder. 
See 3.4.3 above.  

 
3.4.3.2 Position tolerance 
the tolerance zone has a prismatic form, either a parallelepiped or a cylinder. See 3.4.3 above.  

                                                 
14 Let us note that, by definition, the circular path followed by any point being roto-projected is entirely 

on a same side of the xz plane. As a consequence, two close points on opposite sides of the xz plane 
are roto-projected onto opposite xz half-planes, i.e. their x coordinates have opposite signs. 

15 The toleranced feature is the intersection of the surface with a defined plane, see [18] Figures 90 and 
92 for examples. The intersection plane can be defined either explicitly by an intersection plane 
indicator (for example [18] Figures 90) or implicitly by the drawing (for example the generatrix of a 
cylinder, see [18] Figures 92). 

16 The toleranced feature is a derived line such as the median line of a cylinder (for example, [18] Figures 
94). 
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3.4.4 Constrained features 
Features may be subject to constraints, e.g., the axis of a cylinder indicated as secondary 
datum is constrained to be orthogonal to a plane indicated as primary datum17. 
Apart from the datum system, tolerances of form (without a datum) are free from constraints, 
orientation tolerances (parallelism, perpendicularity and angularity) are constrained by the 
datum orientation(s), positions tolerances are constrained by the datum orientation(s) and 
position(s). 
The procedure described in 3.3 is valid for free as well as for constrained features and applies 
with no distinction to either case. The same is true for the uncertainty evaluation based on the 
principle of maximum entropy (3.4.1). 
 
3.4.5 Profile tolerances 
Profile tolerances can be either with or without reference to a datum (system). 
When the nominal profile is not merely straight or flat, it contains dimensional information, for 
instance the diameter of a cylindrical surface, or the concavity of a curved surface. Even when 
the profile tolerance is without a datum, constraints are there to match the dimensional 
information. 
The uncertainty evaluation for verification of profile tolerances with or without datum is no 
different from that for form or orientation tolerances. The procedures described in 3.3, and 
when necessary those in 3.4.1 and/or 3.4.2, apply to the evaluation. 

                                                 
17 The primary datum is in fact the direction normal to the plane, and the cylinder is constrained to be 

parallel to this direction. The effect of the cylinder as secondary datum is the localisation of the 
coordinate axis orthogonal to the plane. 
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4. Conclusions 
A practical a posteriori (type A) method to evaluate the task specific uncertainty of coordinate 
measurements done with tactile CMMs in ordinary industrial floors was developed. It provides 
traceable measurement values and their uncertainties with need neither of a calibrated 
reference workpiece nor of special software. A repetition and reversal plan is carried out with 
the very workpiece under measurement; the results are computed within a simple spreadsheet. 
The developed method is applicable not only to simple dimensional measurements, e.g., size, 
angle and location, but also to form and profile deviations. The measurement uncertainty is 
estimated from a combination of the revealed errors and of standard uncertainty components 
derived from ANOVA analysis. 
By resorting to the maximum entropy principle, the method is extended to those cases where 
the CMM software interface do not disclose internal calculation details such as the local form 
deviations. 
A spreadsheet template implementing the method has been developed. The required 
operation to get traceable results and their uncertainties is just copying-and-pasting individual 
measurement results obtained according to the experimental plan. 
Even if the method is designed and intended for tactile CMMs, further developments may 
reveal that its core is applicable to other CMSs as well. A preliminary application to computer 
tomography was encouraging. 
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