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Abstract - This paper is concerned with the generation
of numerical artefacts, that is, reference data sets, for
assessing the accuracy and fitness of purpose of software
for computing minimum zone (MZ, Chebyshev) associated
features. We describe an algorithm for generating datasets
corresponding to a pre-specified best-fit surface and form
error. We use a Gaussian process model to generate
form errors that are spatially correlated. The form errors
can be drawn from multivariate Gaussian or rectangular
distributions. For the latter case a Gaussian copula is used
construct a multivariate multivariate distribution with the
pre-assigned correlation. We illustrate the data generation on
MZ circle fitting problems. We also describe an approximate
MZ circle fitting problem that can be solved using linear
programming.
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1. INTRODUCTION

Coordinate metrology can be thought of as a two-
stage process, the first stage using a coordinate measuring
system to gather coordinate data xi, i = 1, . . . ,m, related
to a workpiece surface, the second extracting a set of
parameters or characteristics a = (a1, . . . , an)

> from
the data x1:m using software implementing mathematical
algorithms, e.g., determine the parameters associated with
the best-fit cylinder to data. The computational software
is involved in the traceability chain and for the outputs of
the software to be considered traceable to the metre, it is
necessary to assess the accuracy and fitness for purpose of
the software [1, 2, 3]. A major tool for testing software is
the generation of reference datasets or numerical artefacts
for which the correct output is known to high accuracy. One
approach for generating such datasets is to start with the
output a and then generate the inputs x1:m, the so-called
null space approach. In this paper we describe a null space
approach for generating numerical artefacts associated with
minimum zone (MZ) associated features [4], i.e., surface
fitting according to the Chebyshev criterion . In particular,
we show how datasets can be generated with a specified form
error and spatially correlated form errors.

2. Reference data generation for MZ problems

2.1. Form error model incorporating spatial correlation
The basic model for form error can be described as

xi = si + fini,

where si = s(ui,a) is a point of the surface of an ideal
geometric element, ni is the unit surface normal at si and
fi is the signed departure from the ideal geometry at si, or
the form error at si. The parameters a specify the particular
geometric element, for example, the centre coordinates and
radius of a circle. The idea of spatial correlation is that if si
is near sj then fi should not be too far from fj . The notion
of nearness is quantified by a length scale parameter λ: if
si is close to sj , relative to λ, then fi should be close to
fj . Models of spatial correlation can be implemented using
statistical correlation. Using a Gaussian process model [5],
the form errors fi and fj are regarded as samples from a joint
statistical distribution and the covariance of fi with fj is
controlled by a correlation kernel function k(si, sj) related
to the distance between si and sj , for example,

cov(fi, fj) = σ2
F exp

{
−(si − sj)

>(si − sj)/λ
2
}
.

2.2. Least squares best fit elements and multivariate
Gaussian distribution with spatial correlation
Given surface points si = s(ui,a) with normal

vectors ni, i ∈ I = {1, . . . ,m}, let J be the Jacobian matrix
J = QR where Q is m×n associated with the least-squares
fit to si [6]. Construct the projection matrix P = I −QQ>.
Suppose the spatial correlation is encoded by the m × m
variance matrix V generated as

V (i, j) = k(si, sj),

for some correlation kernel k. Then if

xi = si + fini, f ∈ N(0, PV P>),

the least-squares best-fit surface to {xi}m1 is specified by a.

2.3. Minimum zone elements and multivariate rectangular
distribution with spatial correlation
Suppose we are given surface points si = s(ui,a)

with normal vectors ni, i ∈ I = {1, . . . ,m}. Let the
index set I∗ ⊂ I specifying contacting points that define
a minimum zone solution [7, 4], with fi = ±F , i ∈ I∗. We
assume, as before that the spatial correlation is encoded in
the variance matrix V generated as

V (i, j) = k(si, sj),



for some correlation kernel k, and that C is the correlation
matrix derived from V . The following scheme generates
a sample f ∈ [−F, F ]m from a multivariate rectangular
distribution constructed using a Gaussian copula [8] with
preassigned correlation. The inputs to the scheme are:
parameter F > 0 specifying the rectangular marginal
distributions U(−F, F ), integer m > 0 and an m × m
correlation matrix C specifying the spatial correlation. The
outputs are spatially correlated form errors fi with −F ≤
fi ≤ F . The steps in the scheme are:

1. Form the Cholesky factorisation C = LL>.

2. Set z = Le where e ∈ N(0, I), and u such that ui =
CN(zi), 0 < ui < 1, i = 1, . . . ,m, where CN is the
cumulative distribution function for a standard normal
distribution.

3. Set f = 2Fu− F .

For generating data with known minimum zone
solution, we can first generate contacting points determining
a local minimum and then add as many additional points that
lie within the minimum zone. The generation of contacting
points for local solutions defined by first order optimality
conditions, termed ‘vertex solutions’ is straightforward [4,
7]. In order to determine data sets that reflect spatially
correlated form errors we would like to add additional points
that are spatially correlated relative to each other but also
relative to the pre-specified contacting points.

As a first step, assume the index set is partitioned so
that I = I1∪I2 where I1 specifies the first k points and I2 the
remaining m − k points and that the form errors associated
with I1 are pre-assigned to be f1, −F ≤ fi ≤ F , i ∈ I1.
Let the Cholesky factor of L of C be partitioned as

L =

[
L11

L21 L22

]
,

where L11 is k × k, etc. Steps 2 and 3 above can be also be
partitioned accordingly:

z1 = L11e1, z2 = L21e1 + L22e2,

u1 = CN(z1), u2 = CN(z2),

and
f1 = 2Fu1 − F, f2 = 2Fu2 − F.

If f1 is pre-assigned, then u1, z1 and e1 are all also pre-
assigned according to

u1 =
f1 + F

2F
, z1 = C−1N (u1), e1 = L−111 z1.

With e1 so defined, for e2 ∈ N(0, I), f2 can be generated
as above to reflect the spatial correlation encoded in the
correlation matrix C and the known from errors f1. This
generation scheme is analogous to generating a plausible set
of form errors f2 at surface points si, i ∈ I2, given that
form errors f1 at locations si, i ∈ I2, have been measured
accurately.

In order to generate data for which the MZ solution
is known, I1 is used to specify the contacting points with
fi = ±F , i ∈ I1. However, for this choice, ui is assigned
to 0 or 1 and the inverse normal cdf C−1N is not finite at
these values. From a probability point of view, given a finite
sample from a rectangular distribution U(−F, F ), there is
zero probability that any member of the sample is equal to
F in magnitude. We can use order statistics for the uniform
distribution to assign more plausible values for f1 [9]. Given
m samples from the rectangular distribution U(0, 1), the
expected value of the smallest sample is 1/(m + 1) and
the expected value of the largest is m/(m + 1). Given
m samples from U(0, 1) it is quite likely that one or more
samples will lie outside the interval [1/(m+1),m/(m+1)]
but much less likely that they will lie outside an interval such
as [1/(2m + 1), 2m/(2m + 1)]. On this basis we assign
fi = ±Fm, where

Fm =
2m− 1

2m+ 1
F.

With this value, there is now a finite but small probability
that maxi∈I2 |fi| > Fm, given a random draw e2 ∈ N(0, I).
If this happens, we perform a small adjustment in f2 so that
the bound is satisfied according to:

fi :=
Gfi√

G2 + (γ2 − 1)f2i
, γ =

G

Fm
, G = max

i∈I2
fi.

(1)
The effect of the adjustment is to reduce only those fi that
are above or close to the bound Fm.

2.4. MZ data generation algorithm
The following scheme generates data points xi for

which the minimum zone fit is given by a with contacting
points xi, i ∈ I∗ and spatially correlated form error fi with
|fi| ≤ F . We assume that the data points si are ordered
so that I = I1 ∪ I2 with I∗ = I1 = {1, . . . , k} and
I2 = {k + 1, . . . ,m}. The inputs to the scheme are:

1. Surface points si = s(ui,a) with normal vectors ni,
i ∈ I where I = I1 ∪ I2 = {1, . . . ,m}, where I1
specifies k contacting points that define a minimum
zone solution.

2. Form errors fi = ±F , i ∈ I1 associated with
contacting points

3. Form error bound Fmax ≤ F for non-contacting points.

4. An m ×m correlation matrix C specifying the spatial
correlation.

The outputs are Spatially correlated form errors −F ≤ fi ≤
F , i ∈ I , −Fmax ≤ fi ≤ Fmax, i ∈ I2, and data set xi =
si + fini, such that the minimum zone fit to xi is given by
parameters a. The steps in the scheme are:



1. Form the Cholesky factorisation C = LL> and
partition L as

L =

[
L11

L21 L22

]
,

where L11 is k × k, etc.

2. Set Fm = (2m−1)F/(2m+1) and f1,m = Fmf1/F .

3. Set

u1 =
f1,m + F

2F
, z1 = C−1N (u1), e1 = L−111 z1.

4. Set z = L21e1 + L22e2, e2 ∈ N(0, I), and u2 =
CN(z2).

5. Set f2,m = 2Fu2 − F .

6. If necessary, adjust f2,m according to (1).

7. Set

f =

[
f1

f2,m

]
.

8. Set xi = si + fini, i ∈ I .

3. EXAMPLE: MINIMUM ZONE CIRCLE

To illustrate the approach, we generate data for
minimum zone (MZ) circle calculations. Determining an
MZ circle fit can be posed as a constrained optimisation
problem

min
x0,y0,r0,R0

R0 − r0 (2)

subject to the constraints

R2
0 ≥ r2i ≥ r20, r2i = (xi − x0)2 + (yi − y0)2.

As posed, while the objective function is linear in the
optimisation parameters, the constraints depend nonlinearly
on them and algorithmic solutions for this type of problem
are not straightforward in general [10]. However, defining s
and S by

s = r20 − x20 − y20 , S = R2
0 − x20 − y20 ,

the optimisation problem can be reformulated as

min
x0,y0,s,S

S − s
R0 + r0

(3)

subject to
x2i + y2i ≥ 2xix0 + 2yiy0 + s,

x2i + y2i ≤ 2xix0 + 2yiy0 + S, (4)

where
r0 = r0(x0, y0, s) = (s+ x20 + y20)

1/2,

R0 = R0(x0, y0, S) = (S + x20 + y20)
1/2.

The reformulated optimisation problem involves minimising
a nonlinear objective function subject to linear constraints

and can be addressed by more straightforward algorithms
compared to those required for (2). The objective function
in (3) is nonlinear due to the factor of 1/(R0 + r0). For data
representative of a circle, this factor will be approximately
constant over the region representing plausible solutions
to the problem, suggesting that we can determine an
approximate solution by solving

min
x0,y0,s,S

S − s (5)

subject to the constraints (4). This last formulation is a linear
programming problem for which there are straightforward
and highly effective solution algorithms [10, 11], including
Dantzig’s celebrated simplex algorithm [12].

The MZ circle problem as posed in (4) can have a
number of local solutions and most algorithms to solve
it require a starting estimate for the circle centre and the
algorithms will perform a sequence of iterations, reducing
the radial separation at each step, until a local minimum
is found. The approximate MZ (AMZ) circle problem
has a unique global minimum which will coincide with a
local minimum for the MZ problem, but not necessarily
the global minimum for the MZ problem. The MZ data
generation algorithm can be used to test the performance of
an algorithm solving the AMZ problem on data involving a
realistic form errors.

Figures 1–3 show three data sets generated using
the scheme described in section 2.4 for r0 = 10,
F = 1, m = 180, and spatial correlation lengths
λ = 0.1, 2.0 and 10.0, corresponding to weak
correlation and near random form errors, moderate
correlation and ‘wavy’ form errors and strong correlation
and smoothly varying form errors, respectively. Also
shown are the four contacting points that define the MZ
circle solution, each showing the characteristic interlacing
property in which the contacting points alternate between
being situated on the inner and outer circle, going
around the circle. We have implemented MATLAB
software for solving the MZ problem using MATLAB
optimisation component FMINCON.M implementing a
sequential quadratic programming algorithm and for solving
the AMZ problem using MATLAB optimisation component
LINPROG.M implementing a dual simplex algorithm. Both
software implementations found the optimal solution in a
small number (about 10 or less) iterations. For datasets
similar to those in the figures 1–3, the AMZ solution will
be almost certainly be the same as the MZ solution.

4. CONCLUSIONS

This paper has been concerned with the generation of
numerical artefacts (reference data sets) for assessing the
accuracy and fitness of purpose of software for computing
minimum zone (MZ, Chebyshev) associated features. We
have described an algorithm for generating datasets with
a pre-specified form error and spatial correlation, using a
Gaussian copula to sample from a multivariate distribution
with rectangular marginal distributions. We have illustrated



Fig. 1. Synthesized circle data with for r0 = 10, F = 1,
m = 180, and spatial correlation length λ = 0.1, corresponding to
weak correlation and near random form errors. The circle mark the

four ‘contacting’ points associated with the solution MZ circle

Fig. 2. As figure 1 but with λ = 2, corresponding to moderate
correlation and ‘wavy’ form errors.

the data generation on MZ circle fitting. We have also
described an approximate MZ circle fitting problem that can
be solved using linear programming.
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Fig. 3. As figure 1 but with λ = 10, corresponding to strong
correlation and smoothly varying form errors.
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