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Abstract - Coordinate metrology can be thought of as
a two-stage process, the first stage using a coordinate
measuring system to gather coordinate data – point clouds
– related to a workpiece surface, the second extracting a
set of parameters or characteristics from the data. In this
paper, we describe a range of straightforward, approximate
models of CMM behaviour that can be used to generate
variance matrices associated with point clouds. In particular,
we describe models that incorporate spatial correlation to
capture the smooth departure of CMM behaviour from ideal
geometry. We also discuss how variance matrices associated
with point clouds can be propagated through to variance
matrices associated with derived features.
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1. INTRODUCTION

Coordinate metrology can be thought of as a two-
stage process, the first stage using a coordinate measuring
system to gather coordinate data xi, i = 1, . . . ,m, related
to a workpiece surface, the second extracting a set of
parameters or characteristics a = (a1, . . . , an)> from
the data x1:m using software implementing mathematical
algorithms, e.g., determining the parameters associated
with the best-fit cylinder to data. The evaluation of
the uncertainties associated with geometric features a
derived from coordinate data x1:m is also a two stage
process, the first in which a 3m × 3m variance matrix
VX associated with the coordinate data is evaluated, the
second stage in which the uncertainties associated with x1:m

are propagated through to those for the features a derived
from x1:m. The uncertainties associated with the computed
parameters depend on the uncertainties associated with the
point coordinates as encoded in the associated variance
matrix. While the true variance matrix may be difficult
to evaluate, a reasonable approximation can be determined
using approximate models of CMM behaviour.

2. GENERAL MODEL OF CMM MEASUREMENT

A general model of CMM measurement has the form

xi = x∗i + ei + εi, εi ∈ N(0, σ2
i I) (1)

where xi is the measured coordinates, x∗i is the true
point coordinates, ei is a systematic effect and εi is a
random effect, i = 1, . . . ,m. The systematic effect ei is

taken to be approximately constant over the duration of a
measurement of a part while the random effect εi represents
a sum of effects that change over a very short timescale
effectively modelling the repeatability component of the
CMM uncertainty.

We generalise the model in (1) to cater for the
possibility that the measurements may be subject to a
number of independent systematic effects that combine
additively to influence the measurement result, e.g.,

xi = x∗i + ei,B + ei,C + ei,D + εi, εi ∈ N(0, σ2
i I) (2)

We assume that the behaviour of the systematic effects can
be described by a statistical model which allows use to
calculate (or estimate) the contribution to the variance matrix
VX associated withx1:m from the various effects. We denote
by VX|B , the variance contribution arising from e1:m,B ,
etc. For the model in (2), the variance matrix VX can be
decomposed as

VX = VX|B + VX|C + VX|D + VX|R.

We denote by VX|R the diagonal variance matrix
representing the variance contribution from the random
effects ε1:m.

2.1. Propagation of variances
The law of propagation of uncertainty, the basis of

the GUM [1], in its multivariate setting [2] describes how
uncertainties associated with the measured coordinates in
(2) can be evaluated on the basis of uncertainties associated
with the systematic and random effects. Suppose effects
ei,B = ei(b), i = 1, . . . ,m, are specified by nB parameters
b = (b1, . . . , bnB

)>, and that a statistical model for b
specifies the nB × nB variance matrix VB associated with
b. If GX|B is the 3m × nB sensitivity matrix of x1:m with
respect to b constructed from 3× nB matrices

GX|B,i =
∂xi

∂b>
,

then
VX|B = GX|BVBG

>
X|B .

The role of the sensitivity matrix GX|B can be explained
as follows. If the parameters b describing the systematic
effects are perturbed by ∆b, then the resulting perturbation
on e1:m and hence x1:m is given by ∆x1:m = GX|B∆b, to
first order.

Often we are interest in quantities derived from a set
of point coordinates. As a consequence of the chain rule in



calculus, if a = (a1, . . . , anA
)> depends on x1:m andGA,X

is the nA × 3m sensitivity matrix of a with respect to x1:m

then the nA × nB sensitivity matrix GA|B of A with respect
to influence factors b is given by

GA|B = GA|XGX|B ,

and the nA × nA variance matrix VA|B describing the
variance contribution to a arising from factors b is given by

VA|B = GA|BVBG
>
A|B .

If the systematic effects b are perturbed by ∆b, then the
derived parameters a are perturbed by ∆a = GA|B∆b, to
first order. An important example of quantities a derived
from point coordinates x1:m is where a are parameters
associated with a Gaussian associated feature to x1:m, e.g.,
the least squares best-fit cylinder to a data set.

3. SCALE AND SQUARENESS EFFECTS

From practical experience, it is well known that a
major component of CMM behaviour relates to scale and
squareness errors. The model below incorporates a global
scale effect baa, axis scale effects bxx, byy and byz , and three
squareness effects bxy , bxz and byz through

xi = B(b)x∗i + εi. (3)

with B(b) = (1 + baa + bxx) bxy bxz
0 (1 + baa + byy) byz
0 0 (1 + baa + bzz)

 ,
(4)

depending on b = (baa, bxx, byy, bzz, bxy, bxz, byz)>. The
3m× 7 sensitivity matrix GX|B for this model is assembled
from 3× 7 matrices of the form

Gi =

 xi xi 0 0 yi zi 0
yi 0 yi 0 0 0 zi
zi 0 0 zi 0 0 0

 . (5)

The model is completed by specifying the variance matrix
VB associated with the scale and squareness effects.
Over modest working volumes over which straightness
and rotational effects are not significant, the scale and
squareness model is a useful approximation. For this model,
the variance contribution VX|B associated with a set of
coordinates from b is given by

VX|B = GX|BVBG
>
X|B , (6)

where GX|B is the 3m × 7 sensitivity matrix constructed
from Gi defined as in (5). In practice, we usually avoid
forming this matrix explicitly but perform calculations using
GX|B and VB .

4. PROBE QUALIFICATION EFFECTS

For error models with an explicit dependence on
the probe offset pk, the fact that the probe configuration
geometry is usually determined in probe qualification
experiments means that there will be uncertainties associated
with estimates of the offsets. If xi is a measurement using
the kth probe, then the uncertainty contribution arising from
the probe qualification can be modelled as

xi = x∗i +pk +ePQ,k +εi, ePQ,k ∈ N(0, σ2
PQ,kI), (7)

where pk is the calibrated probe offset vector for the kth
probe and ePQ,k models the (unknown) difference between
the actual probe offset and its calibrated value, k =
1, . . . , nP . An important feature of the model is that all
measurements with the kth probe are associated with the
same systematic effect ePQ,k. The variance contribution
associated with probe qualification is given by

VX|PQ = GX|PQVPQG
>
X|PQ

where VX|PQ is the 3nP × 3nP variance matrix associated
with the systematic effects ePQ,k and GX|PQ is the 3m ×
3nP sensitivity matrix. The variance matrix VPQ is a
diagonal matrix with the 3 × 3 matrix σ2

PQ,kI in the kth
diagonal block. If the ith measurement is associated with
the kth probe, then

GX|PQ(3i− 2 : 3i, 3k − 2 : 3k) = I

the 3×3 identity matrix, and all other elements in these three
rows are zero.

5. SPATIAL CORRELATION MODELS

Gaussian process models [3, 4] can be used to develop
empirical models of behaviour that incorporate spatial or
temporal correlation. If an effect e is associated with a
spatial location x, then the correlation between effects e and
e′ is evaluated as

corr(e, e′) = k(x,x′|σ)

where k is a correlation kernel depending on statistical
parameters σ. Often k depends on x and x′ through
‖x− x′‖, e.g.

cov(e, e′) = k(x,x′) = σ2
1 exp{−‖x− x′‖2/σ2

2}. (8)

The strength of the correlation between e and e′ depends on
the distance between x and x′: the closer x is to x′, relative
to σ2, the stronger the correlation between e and e′.

A GP model can be used to supplement a parametric
model e(b) for the systematic effects, e.g., a scale and
squareness error model considered in section 3, in which the
role of the GP model is to simulate behaviour not captured
by the parametric model.



5.1. GP models for location errors
We can apply a GP model for CMM behaviour as

follows with
xi = x∗i + ei + εi, (9)

where the systematic effects are spatially (and sometimes
temporally) correlated. In general, the covariance applies
only along the same axis with the x-, y- and z-coordinates
of e mutually independent. The covariance with ex with e′x
could be modelled as

cov(ex, e
′
x) = k(x,x′|σx) = σ2

1,x exp
{
−‖x− x′‖2/σ2

2,x

}
,

for example, where σ2,x defines the length scale for the
correlation in the x-coordinate. Note that in this model, the
strength of the correlation in the effects ex depends on the
distance ‖x−x′| in three dimensions, not the distance along
the x-axis.

Let D be the m×m matrix of distances with

Dij = ‖xi − xj‖.

The variance contribution VXT from e1:m to the x-
coordinates of xi:m is given by

VXT,x = σ2
1,x exp

{
−D2/σ2

2,x

}
where the calculations associated with D are made element-
wise. The contribution to the y- and z-components are of
exactly the same form. The matrix VXT is assembled from
VXT,x VXT,y and VXT,z , with all other elements zero since
we assume that the systematic effects associated with the x-
coordinates are independent from those associated with the
y- and z-coordinates, etc.

5.2. Gaussian process model for location and rotation
errors
The GP models in section 5.1 used, perhaps, with a

simple parametric error model can simulate a wide range of
plausible CMM behaviour but it relates only to one probing
configuration and does not, without modification, allow us
to evaluate the uncertainties associated with different probe
configurations. An extension of the model is to use GP
models for both the location and rotation errors:

xi = x∗i + ei +R(αi)p+ εi, (10)

where αi = (αi,x, αi,y, αi,z)> represents three spatially
correlated rotation errors acting on the probe offset vector
p through the rotation matrix

R(αi) = Rz(αi,z)Ry(αi,y)Rx(αi,x), (11)

the product of rotations about each of the three coordinate
axes.

We note that if the variance matrix associated withα =
(αx, αy, αz)> with α = 0 is Vα, then the variance matrix
Vp associated with R(α)p, with R(α) as in (11), is given
by GVαG> where

G =

 0 pz −py
−pz 0 px
py −px 0

 , p = (px, py, pz)>. (12)

The explicit dependence on the probe offset allows different
probe configurations to be modelled. For this case, it is
important to note that the spatial correlation is dependent on
‖x∗i − x∗q‖, not ‖xi − xq‖, following (10). For different
probe configurations we have

‖x∗i − x∗q‖
.
= ‖(xi − pk(i))− (xq − pk(q))‖,

where pk(i) denotes the probe configuration associated with
the ith measurement, etc.

If ṼXR is the 3m×3m variance matrix associated with
α1:m determined from the correlation kernel (or otherwise),
then the variance contribution to the measurements x1:m is
given by

VXR = GXRṼXRG
>
XR,

where GXR is a 3m× 3m block-diagonal matrix. If the ith
measurement is associated with the kth probe, then the 3×3
ith diagonal is equal to Gk, where Gk is constructed from
pk as in (12).

5.3. Gaussian process model for probing effects
The operation of the probe system is likely also to

make a variance contribution. While the CMM geometric
errors are likely to vary smoothly with location, the probing
errors are likely to vary smoothly with the probing direction,
usually designed to be normal to the surface being probed.
We can augment the model in (9) to one of the form

xi = x∗i + ei + eP,ini + εi, (13)

where eP,i is a systematic effect associated with probing
and ni is the unit normal probing direction. The correlation
between effects eP,i and eP,j depends the spatial separation
‖ni − nj‖ if both measurements use the same probe.
We assume that probing effects associated with different
probes are statistically independent (although there may
be situations where some statistical dependence would be
expected). The variance matrix associated with spatially
correlated probing effects is denoted by VXP .

6. COMBINED EFFECTS

We can write the variance matrix VX incorporating all
the effects considered above as

VX =VXT + VXR + VXP + ...

GX|BVBG
>
X|B +GX|PQVPQG

>
X|PQ + VR,

where the first three variance matrices or the right are derived
from spatially correlated location, rotation and probing
effects, and the second three are the contributions from
scale and squareness effects, probe qualification effects and
independent random effects, respectively. For some cases,
not all effects need to be considered. For example, for
measurements using a single probe, rotational effects and
probe qualifications need to be calculated. While the model
does have some degree of complexity, all the variance
matrices can be calculated using direct calculations based



R S G
u(x0)/0.001 mm 1.8 0.2 3.0
u(y0)/0.001 mm 1.8 0.2 3.5
u(r0)/0.001 mm 1.3 2.5 1.7

Table 1. Uncertainty calculations associated with a cylinder
parameters for three uncertainty models.

on, for example, the point coordinates, the distances between
points, etc.

If GA|X us the sensitivity matrix associated with a
feature vector a with respect to coordinates x1:m, then
the variance matrix VA associated with a can also be
decomposed as

VA =VA|XT + VA|XR + VA|XP + ...

GA|BVBG
>
A|B +GA|PQVPQG

>
A|PQ +GA|XVRG

>
A|X ,

where VA|XT = GA|XVXTG
>
A|X , etc., and GA|B =

GA|XGX|B , etc. Thus GA|PQVPQG
>
A|PQ is the variance

contribution to VA arising from probe qualification effects,
for example.

7. FEATURES DERIVED FROM COORDINATE
DATA

If parameters a are determined from fitting a geometric
element to data according to the least squares criterion
minimising∑

i

d2i (xi,a), di(xi,a) = n>i (xi − s(u∗i ,a))

then if J is the Jacobian matrix at the solution with Jij =
∂di/∂aj and N the projection matrix with Ni,3i−2:3i = n>i
then the sensitivity matrix GA|x of a with respect to x1:m is
given by GA|X = (J>J)−1J>N .

7.1. Cylinder features
A cylinder [5] can be specified by five parameters

a = (x0, y0, α, β, r0)> where (x0, y0) are coordinates
where the cylinder axis cuts the plane z = 0, α and β are
rotation angles about the x- and y-axes respectively, defining
the axis direction and r0 its radius. We have constructed
three CMM uncertainty models: random effects only, (R),
scale and squareness effects (S), and spatially correlated
location effects (G). All three models are such that the
uncertainty associated with each coordinate = 0.004 mm,
approximately. The uncertainties associated with x0, y0
and r0 for the three models are given in Tab. 1. While the
uncertainties associated with each coordinate are the same,
approximately, for each model, the effect on the cylinder
parameter estimates are significantly different, due to the
different types of correlation associated with the point cloud
uncertainties.

8. CONCLUSIONS

In this paper, we have described a range of
straightforward, approximate models of CMM behaviour
that can be used to generate variance matrices associated
with point clouds. In particular, we have described models
that incorporate spatial correlation to capture the smooth
departure of CMM behaviour from ideal geometry. We
have also discussed how variance matrices associated with
point clouds can be propagated through to variance matrices
associated with derived features. Through the collaborative
EUCoM project (see acknowledgements below), work is
continuing to validate the models from a comprehensive set
measurement experiments involving a range of calibrated
artefacts. By providing plausible prior models of CMM
behaviour, it is hoped to be able to evaluate uncertainties
associated with derived features that are more realistic and
help practitioners determine if a particular instrument or
measurement strategy is fit for purpose as well as supporting
the traceability of coordinate measurement to the metre.
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